CERN, July 7th, 2010

LHCf status report

Oscar Adriani Università degli Studi di Firenze INFN Sezione di Firenze

On behalf of the LHCf Collaboration

INFN

Detectors installed in the TAN region, 140 m away from the Interaction Point

×Here the beam pipe splits in 2 separate tubes.
×Charged particle are swept away by magnets
× We cover up to y→∞

LHCf : Monte Carlo discrimination

10⁶/10⁷ generated LHC interactions at 7+7 TeV→ 1 minute exposure@10²⁹ cm⁻²s⁻¹ luminosity

LHCf Operations at 900 GeV

06 Dec - 15 Dec 2009

27.7 hours for physics

~5x10⁵ collisions at IP1

~2,800 shower events in Arm1 ~3,700 shower events in Arm2

02 May – 27 May 2010 15 hours for physics

~5.5x10⁶ collisions at IP1 (Statistics x 11 wrt 2009)

~44,000 shower events in Arm1 ~63,000 shower events in Arm2

Beam Gas significantly reduced wrt 2009

2009 vs 2010

2009

Very big reduction in the Beam Gas / Bunch crossing ratio!!!! Very big increase of the 'signals/noise' ratio due to higher intensity

Oscar Adriani 07/07/10

2010

Particle Identification

07/07/10

Results at 900GeV: PID

Arml Spectra at 900 GeV

Only statistical errors are quoted

MC normalized to the total number of events in the 2 towers,without PID. Only one normalization factor common to all models

Arm2 Spectra at 900 GeV

Only statistical errors are quoted

MC normalized to the total number of events in the 2 towers,without PID. Only one normalization factor common to all models

LHCf 2010 runs (mainly at 7 TeV)

- Detector shows good performance with stable quality.
 - Energy scale calibration with the π^0 peak!!!!
 - Good stability $< \pm 1\%$ level.
 - We start now to have some radiation problem.
- Thanks a lot to all LHC people for providing us 100 µrad crossing angle!!!
 - Very important for physics to enlarge the P_T acceptance
 - Special thanks to Massi for coordinating the efforts!

Acceptance gain due to Crossing Angle

No crossing angle

77,11,11,11,11,11,1

A very significant gain in acceptance is clearly visible!

Operation at 7 TeV

Without crossing angle (30/03 - 05/06)

Vertical Position	Center	-5mm	-8mm	-10mm
Arml	35,938,286	5,433,952	4,876,170	9,617,205
Arm2	38,873,415	5,709,553	4,256,258	2,459,871

Total: Arm1 51,227,454 events Arm2 54,957,955 events

in 223 hours operation and about 14 nb⁻¹

With $100\mu rad$ crossing angle (25/06 – Now)

Vertical Pos.	Center	+8mm	+5mm	-5mm	-8mm
Arml	45,369,562	2,106,042	1,818,097	2,044,387	4,960,483
Arm2	41,001,321		1,647,263	4,065,706	2,159,801
Total: Arml 56,298,571 events					

Arm2 48,874,091 events

in 63 hours operation and about ~70 nb⁻¹

7 TeV collisions

1 TeV gamma-ray shower @ Arm2

π^0 at 7 TeV

π^0 mass and energy spectrum (Arml)

Opening angle(mrad.)

π^0 mass and energy spectrum (Arm2)

Arml spectra at 7 TeV

About 10% of all data taken with non-crossing angle

Arm2 spectra at 7 TeV

Very Preliminary

η search

η search at high luminosity operation

Events (/10

Due to ~2 average number of collisions in one bunch crossing, there is a bigger background due to accidental coincidence of two unrelated particles (Pile Up effect)

Please note:

Pile Up depend on filling scheme and optics, not directly on Luminosity

A fraction of data taken with 100µrad crossing angle. (operation with nominal bunch intensity and $\beta^*=3.5m$) L~4 x 10²⁹ cm⁻²s⁻¹

Radiation Damage

- Light yield of plastic scintillators inserted in calorimeters is decreasing due to the radiation damage, in agreement with what we expect from our irradiation measurements
- We are monitoring light yield by nitrogen laser and π^0 invariant mass.

Slow recovery of light yield with time When irradiation stops (Annealing effect)

Integrated dose measured by dosimeter

Timeseries Chart between 2010-03-30 14:08:00 and 2010-07-06 14:08:00 (UTC_TIME) ---- SIMA.4L1.1LM18S:DOSE_HS ---- SIMA.4R1.1RM19S:DOSE_HS Gy 3 Gy Apr-2010 May-2010 Jun-2010 Jul-2010 UTC_TIME

In agreement with our expectations for the Integrated Luminosity

LHCf removal

- LHCf has completed the basic physics program at 7 TeV
- We will continue to take data until next technical stop
 - Special dedicated trigger (η , Λ , High threshold, etc.)
 - Special runs (different setting and vertical positions)
- LHCf will be removed during next technical stop (Starting on July 19)
 - 1 day of laser calibration after LHC stop
 - Removal will be done on Tuesday, July 20
- Detailed plan has been defined in agreement with Atlas ZDC, Remote handling expert, Radio Protection team etc.
- Few hours are needed to remove the detectors

Activities after the removal

- The detector will be checked by RP team to measure the activation
 - Detailed procedures have been defined if LHCf will be declared as 'radioactive'
- We will take laser calibration for at least 1 week after the removal (to study recovery time due to annealing)
- Test beam at the SPS is the next step, to confirm absolute energy calibration
- The optimal date for the Test Beam are now under discussion with the SPS coordinator
 - Original beam time slot at beginning of August is too early!
 - We need help from the SPS coordinator to find the best solution!

Conclusion

- LHCf has completed the basic physics program
- LHCf will be removed from TAN on July 20
- Test beam is foreseen later in the year
- The detector will be upgraded during 2011 to improve radiation hardness
 - GSO will replace plastic scintillator
 - More energy measurement oriented silicon arrangement
- We will be ready to come back in the TAN for the 14 TeV run!

And.... Last but not least...

- Many many thanks to all people that contributed to the success of our experiment!
 - Machine people
 - LHCC and LHCC Referees
 - Atlas
 - SPS Coordinator
 - EN/MEF Division
 - Radio Protection
 - Survey
 - Remote handling
 - Etc. etc. etc.....

Backup slides

900 GeV Arm2 γ event

Radiation Damage Studies

Results on radiation damage

The dose approximately scale as E³

Energy (TeV)	Dose rate (Gy/hour at 10 ²⁹ cm ⁻² s ⁻¹)	Dose rate (Gy/nb ⁻¹)	Time to reach 1KGy at 10 ²⁹ cm ⁻² s ⁻¹ (days)	Integrated lumi to reach lKGy (nb ⁻¹)
0.45+0.45	4.6•10-4	1.27•10 ⁻³	9140	7.9•10 ⁵
3+3	1.3•10-1	0.35	330	2.9•10 ³
5+5	6.1•10-1	1.7	68	590
7+7	1.6	4.3	27	230

Arml Spectra at 900 GeV

χ^2 values for 900 GeV spectra

DPMJET3 QGSJET1 QGSJET2 SIBYLL EPOS

d.o.f. =14

GammaHadrons547.6910.4145.8145.261.971.9303.4451.0110.9222.0

MC normalized to the total number of events in the 2 towers,without PID. Only one normalization factor common to all models