Presentation of CERN Projects

(Magnets, Superconductors and Materials)

Mike Lamont on behalf of the Accelerators and Technology Sector

SPS

FCC

RIBs (Radioactive Ion Beams) > n (neutrons) p (antiprotons) e (electrons) H⁻ (hydrogen anion) p (protons) ions

CERN's scientific priorities

- Exploitation
 - LHC
 - High Luminosity LHC (HL-LHC)
 - Potential of the injector complex
- Secure the future
 - bold new energy frontier machine backed by accelerator R&D
- Diversify
 - novel applications of complex and technology

Electrical transmission lines based on a high-temperature superconductor to carry current to the magnets from the new service galleries to the LHC tunnel.

Interesting times for fundamental physics

ENERGY DISTRIBUTION OF THE UNIVERSE

Upgrade to the High-Luminosity LHC is under Way

The HL-LHC will use new technologies to provide 10 times more collisions than the LHC.

It will give access to rare phenomena, greater precision and discovery potential.

Deployment 2025 - 2027 It will start operating in 2027 and run until ~2040.

HL-LHC

Superconducting bulk niobium RF "crab" cavities*

High-field niobium-tin (Nb₃Sn) superconducting magnets

Robust materials for machine protection

High temperature superconducting links

Double Quarter Wave

- Vertical crossing for Atlas
- SPS test in 2018

2 types of Crab cavities

- Bulk 400 MHz Nb crab cavities & their cryomodules
- Power couplers, HOM couplers, cavity control
- Low trip rate mandatory!Industrialisation for small series

• SPS test in 2021

HL-LHC quadrupole R&D

R&D programme started in 2000

HL-LHC: superconducting link

MgB₂ cable: Φ ~ 90 mm |Itot| > 100 kA @ 25 K

System demonstrator at CERN - DEMO2

Demonstration of: **2 x 20 kA + 2 x 7 kA** [54 kA total]

MgB₂ @ 30K in flexible cryostat over 60m

Collimation

• HL-LHC Collimators, Hollow-electron lens and Crystals

MoGr collimator jaw with BPM

Hollow-electron-lens conceptual design

Prototype LHC bent crystal collimator

HL-LHC

Future options

- FCC study to 2027
 - technical, administrative, financial feasibility of tunnel, with due regard to energy and environment, political, societal and scientific community impact and support
- CLIC, Muon Collider, Plasma Wakefield Acceleration
- Accelerator R&D
 - High Field Magnets, RF (warm and superconducting), Vacuum, Cryogenics...
- Physics Beyond Colliders
 - Novel possibilities (complex and technologies)

ESPP: "Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

15

The FCC integrated program

- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & and top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure

Warm magnets, superconducting RF

High-field SC magnets

FCC roadmap towards stage 1

h ee he

Preliminary!!!

Compact Linear Collider (CLIC)

- X-band core-technology, high efficiency klystrons
- High gradient studies using the CLEAR facility (instrumentation for nano-beams, medical accelerators..)
- Smaller projects outside CERN using X-band technology (medical, industrial and research linacs...)

Muon Collider

International Design Study

The study aims to **establish whether the investment into a full CDR and a demonstrator is scientifically justified.**

Many serious technical challenges!

- High field superconducting magnets
- Fast-ramping magnets and efficient energy recovery
- Superconducting RF
- Normal conducting RF
- Target area with high proton beam power
- Re-optimization of muon cooling system

Muon

Mass: 207 x mass of electron

Lifetime: 2.2 microsecond

Advanced Acceleration Techniques

Contribute to the global effort on developing the use of plasma wake-fields for accelerating particle beams, in particular the development of **proton driven plasma wakefield acceleration technology**.

Technology/R&D

Diverse technical capabilities of the sector: knowledge, experience, expertise, facilities, manufacturing capability...

Developments for in-house applications

New requirements at existing complex (e.g LIU, L4) New projects (e.g. HL-LHC, FCC) R&D programmes (HFM, SCRF...) Improving performance of existing systems Obsolescence

AND... in other institutes/industry:

- Use of CERN technology leveraging CERN's knowledge base – with further R&D a possibility
- Development of novel applications with CERN's support
- R&D for CERN projects as means of establishing and maintaining in-country expertise

Truly impressive number of collaborations in place...

Superconducting magnet technology

FCC-hh: highest collision energies

- Order of magnitude performance increase in both energy & collision rate
- 100 TeV cm collision energy
- Key technology: high-field magnets (~16 T)

Challenging, long-term HFM R&D required

from LHC technology 8.3 T NbTi dipole

via HL-LHC technology 12 T Nb₃Sn quadrupole

FNAL dipole demonstrator 14.5 T Nb₃Sn

High Field Magnet R&D Programme

2020 saw the launch of a reinforced R&D programme for superconducting high-field magnets, as key technology for future accelerators (hadron colliders, muon colliders, neutrino beams, etc.) and detectors, with great potential for wider societal applications.

- Nb₃Sn **conductor** R&D
- Nb₃Sn magnet technology R&D
- Nb₃Sn accelerator magnet development
- HTS material and conductor R&D
- HTS coil technology and accelerator magnet R&D
- Insulating materials, polymers and composites
- Infrastructure for development, manufacture, test and measurement

Strong partnership with industry and with Institutes and Universities in Europe, US and beyond

HFM – already a strong collaborative effort

Mapping of HFM Engagements with Collaborators by RD Line

SRF R&D for FCC

optimize cell shapes

beam dynamics studies

Q-slope mitigation

material & manufacturing

assembly & cost optimisation

ancillaries: 1 MW CW coupler!

coated crab cavities

Conclusions

- What we are doing here at CERN is not easy...
- ...and we want to keep pushing
- As noted by Dr Volker Rieke (BMBF Director-General) in yesterday's Opening Ceremony
 - Fundamental Research drives Innovation
 - Pushes us to the forefront of what is technically feasible (with remarkable results)
- Bold and ambitious future plans
 - technological development in collaboration with industry, fully exploiting the opportunities offered by cutting edge research, is an imperative