
In-situ plasma treatment of Cu surfaces for reducing the generation of vacuum arc breakdowns

anton.saressalo@helsinki.fi

Mini MeVarc, December 9th 2020

Contents

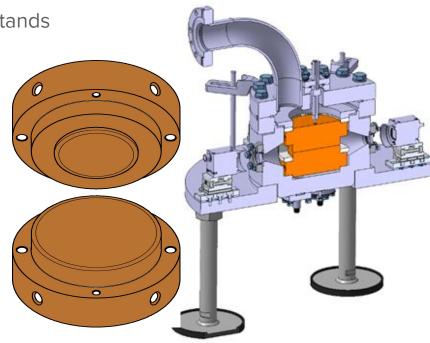
1. Motivation & background

- Large Electrode System
- Why do we need to clean the "clean" electrode surfaces

2. Implementation

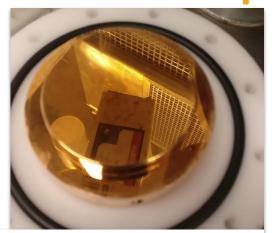
- \circ $\hfill How the system was modified to allow in-situ plasma treatment$
- Plasma characteristics
- Plasma craters

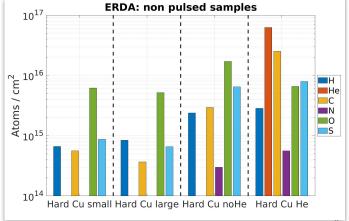
3. Results


- Paschen's curve
- \circ Surface composition
- Effects on conditioning & BD generation

4. Current work & conclusions

Breakdown experiments with Large Electrode System (LES)


- "Compact" system to mimic the larger RF test stands
- BD generation with electric pulses
 - \circ Pulse width: 1 μ s
 - Repetition rate: 2 000 Hz
- Two cylindrical Cu electrodes
 - \circ 40 μm or 60 μm gap in between
 - 40 mm anode vs 60 mm cathode (contact area diameter)
- Electric fields up to 150 MV/m (up to 6 000 V)
- High vacuum (~10⁻⁷ mbar)

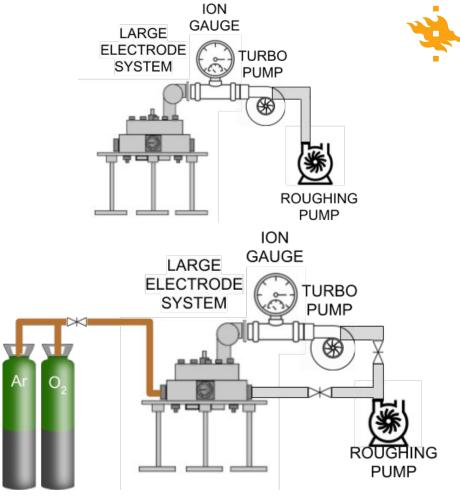


How clean are the electrode surfaces?

- New electrodes undergo a degreasing procedure after manufacturing
- Surfaces are visually very clean
- Electrodes in storage up to years before first BD experiments
 - Sometimes in nitrogen, sometimes in air
- Surface elemental analysis after the storage shows small amounts of H, C, O and S
- Our recent results show that any (vacuum) idle time increases BD probability
 - Even small amount of vacuum residuals can stimulate BDs?

Saressalo, A., Profatilova, I., Millar, W. L., Kyritsakis, A., Calatroni, S., Wuensch, W., & Djurabekova, F. (2020). Effect of dc voltage pulsing on high-vacuum electrical breakdowns near Cu surfaces. *Physical review accelerators and beams*, *23*(11), 113101.

Implementation

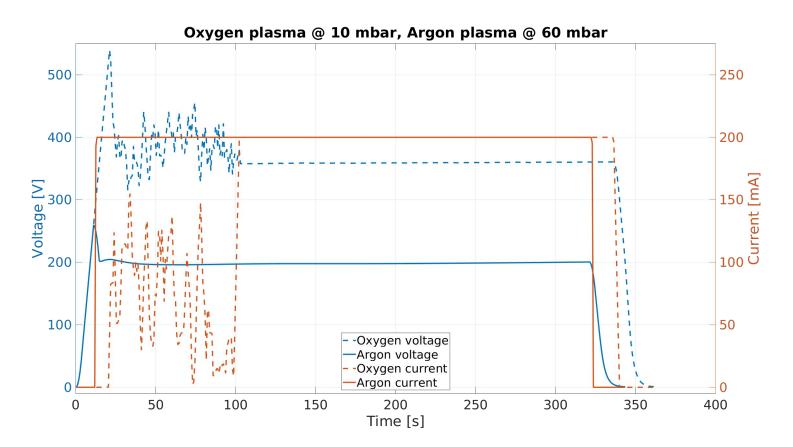

Plasma treatment with LES

ldea

- Insert gas into the vacuum chamber
- Ionize the gas with electric field
- Ionized particles bombard the electrodes cleaning the surface
 - Oxygen to remove hydrocarbons
 - Argon to remove oxygen

Implementation

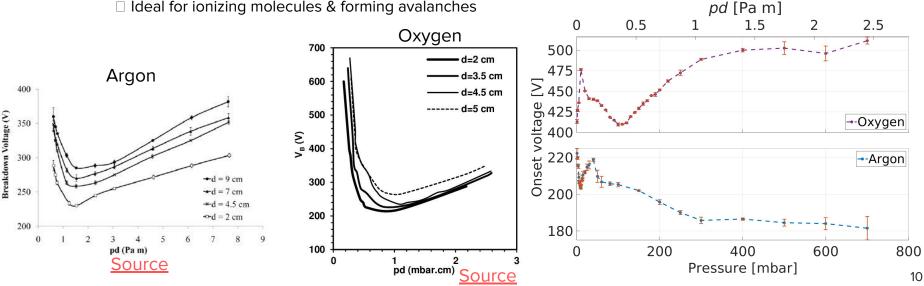
- LES already able to ionize gases!
- Gas inserted via one of the viewports
- Another viewport needed to bypass the turbo pump in order to maintain the 1-100 mbar pressure


Plasma cleaning procedure

- 1. Pump the LES chamber into high vacuum
- Fill the chamber with the ionizable gas (10 mbar for O and 60 mbar for Ar)
- Apply constant DC voltage across the gap
 a. Increase the value until stable current
- 4. Maintain constant voltage & current for 5-10 min
- 5. Switch off voltage & pump back high vacuum
- 6. Repeat steps 2-5 with the other gas

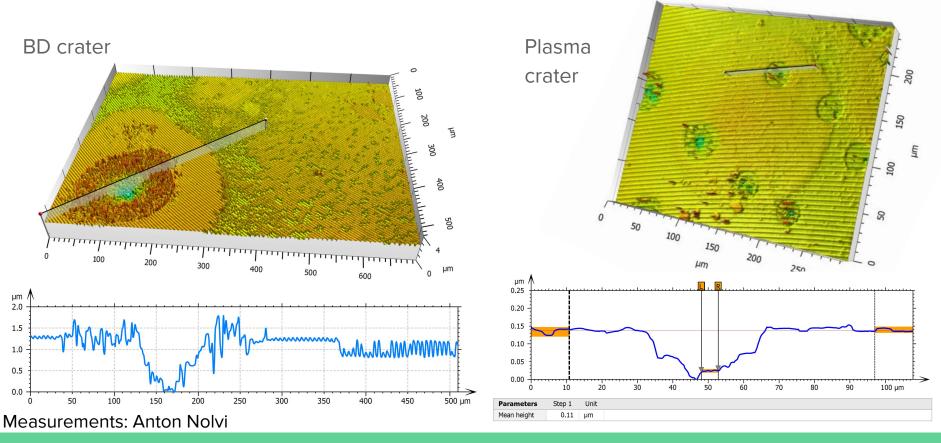
Plasma characteristics

Plasma characteristics - Voltage stability


Plasma characteristics - Paschen curve

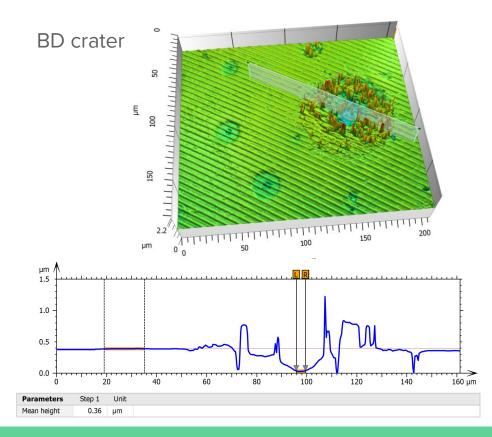
Paschen's law

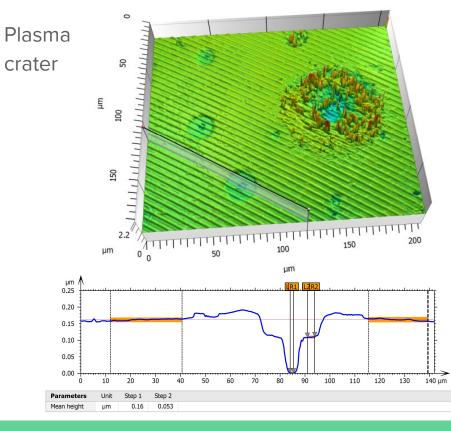
- Mean free path of an electron in gas under electric field vs gas molecular density
 - If MFP is short (high pressure)
 no time to accelerate & ionize gas molecules
 - If MFP is long, but the gas density is small
 Iow frequency for collisions
 - Balance between electric field & pressure
 Ideal for ionizing molecules & forming avalanches


 $MFP \approx \frac{1}{n\sigma} = \frac{kT}{P\sigma}$ $n\sigma$

MFP(Ar, 60 mbar) \approx 44 μ m (!) MFP(O₂, 10 mbar) \approx 131 μ m

Plasma craters


Plasma crater vs BD crater on cathode with Scanning White Light Interferometer (SWLI)



Plasma crater vs BD crater on anode (SWLI)

Measurements: Anton Nolvi

Surface elemental analysis

Surface elemental analysis with ERDA

Elastic Recoil Detection Analysis

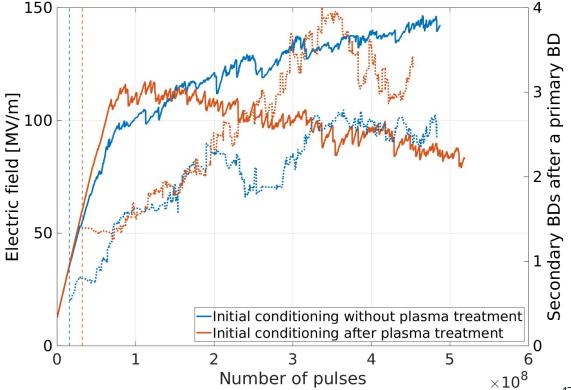
- Measurements with the 5 MV Tandem accelerator at the University of Helsinki
- 40 MeV $^{127}I^{7+}$ ions bombarded on ~1 mm² area
- Elemental composition profile up to ~500 nm below surface

Hard Cu	1 039 history	
---------	---------------	--

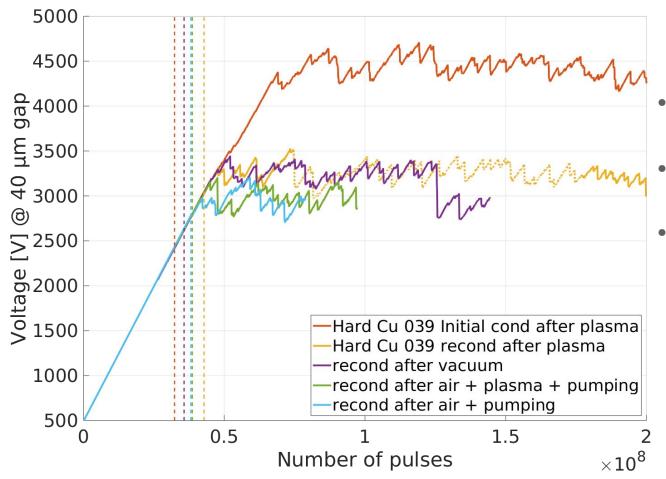
- 1. ERDA measurement
- 2. O+Ar Plasma treatment
- 3. ERDA measurement
- 4. O Plasma treatment
- 5. ERDA measurement
- 6. Ar plasma treatment
- 7. ERDA Measurement
- 8. O+Ar plasma treatment
- 9. Conditioning

Unit: 1e15 at/cm^2	Anode (40 mm, #0186)										Cathode (40 mm, #0185)										
Measurement	н	+-	С	+-	N	+-	0	+-	S	+-	н	+-	С	+-	Ν	+-	0	+-	S	+-	
Clean electrodes from packaging	1.39	0.36	1.41	0.21			6.88	0.44	0.80	0.14	1.89	0.36	<mark>1.82</mark>	0.25			7.88	0.51	1.17	0.18	
After O+Ar plasma + weekend in vacuum	1.64	0.53	1.57	0.20	0.29	0.08	7.65	0.42	0.81	0.12	2.07	0.62	1.79	0.22	0.47	0.10	8.77	0.46	1.07	0.14	
Right after O+Ar plasma	1.00	0.50	1.28	0.17	0.10		5.39	0.36	0.50	0.10	1.08	0.52	1.35	0.19	0.27	0.08	8.52	0.45	0.60	0.11	
Right after O plasma	3.48	0.85	2.78	0.27	0.13		8.33	0.46	0.80	0.13	2.65	0.70	2.62	0.27	0.20		11.49	0.54	0.88	0.14	
RIght after Ar plasma	3.56	0.71	3.83	0.29	0.49	0.09	11.23	0.61	0.85	0.16	2.18	0.78	1.82	0.26	0.17		9.85	0.58	1.30	0.19	

Measurements: Kenichiro Mizohata


Effects on BD generation

Plasma effects on BDs: First conditioning



Hard Cu 039 history

- 1. ERDA measurement
- 2. O+Ar Plasma treatment
- 3. ERDA measurement
- 4. O Plasma treatment
- 5. ERDA measurement
- 6. Ar plasma treatment
- 7. ERDA Measurement
- 8. O+Ar plasma treatment
- 9. Conditioning
- Initial conditioning after plasma very rapid
 - First BD at double the field (60 MV/m vs 35 MV/m)!
 - Typically between 30-40 MV/m with other electrodes & geometries
- Decline after 10⁸ pulses
 - Possibly due to high pressure (5e-7 mbar vs the typical < 8e-8 mbar)
 - Similar lower saturation voltage seen with Hard 031 at such pressure
- Difference in the number of secondary BDs

Minimal effects on reconditioning runs

- All reconds start from 500 V & < 5 x 10⁻⁷ mbar
- Very similar saturation voltages regardless of the plasma
- Smaller differences in the first BD fields
 - Usually first BDs of the first cond much lower than those of reconds

Current work & conclusions

Current work

- Additional experiments on the effects of plasma treatment after 48 h exposure to air
 - Also, does different plasma pressure affect the reconditioning?
- Repeat the plasma treatment & conditioning for another pair of electrodes
 - This time carefully image the surfaces at each stage
- Continuing effort on quantifying the effect of different pressures

Conclusions

- Plasma treatment produces craters on the surfaces
- Plasma cleaning affects BD generation, especially for pristine electrodes
 - BD generation mechanism different during first 10⁸ pulses or 500 BDs due to plasma?
 - Different number of secondary events
 - => Plasma "burns" away the hot spots before the conditioning starts?