GEANT4 10.7 highlights kernel modules

Gabriele Cosmo, CERN EP-SFT

for the Geant4 Collaboration

Outline

- Features and fixes introduced in release 10.7
 - Kernel modules
 - EM Physics (see talk by V.Ivantchenko)
 - Hadronic physics (see talk by A.Ribon)
- > Detailed release notes:
 - <u>http://cern.ch/geant4-data/ReleaseNotes/ReleaseNotes4.10.7.html</u>
- List of planned features for 2020:
 - <u>http://cern.ch/geant4/support/planned_features</u>

Geometry

Geometrical primitives

- Updated VecGeom library, VecGeom v1.1.8
 - Selection for enabling use made at configuration
 - https://gitlab.cern.ch/VecGeom/VecGeom/tree/v01.01.08
 - Improved configuration settings
 - Enhanced navigation system with optional indexing
 - GPU adaptation of navigation for ray-tracing
 - Bug fixes
- Improved speed for overlaps detection
 - Either through UI commands or at geometry construction
 - Improved algorithms for generation of random points on surface and computation of surface area and cubic volume on specific solids

Geometry

Navigation, Field, Volumes, Transportation

- New templated field classes for equation of motion and selected steppers
 - Avoid virtual call for field and equation
 - Expected to provide a direct speedup
- Enhanced reporting from field drivers & debugging logs
 - New dedicated class G4DriverReporter
 - New check-mode for G4PropagatorInField and G4VIntersectionLocator
 - Adoption of new whiteboard for logging/debugging
- Further C++11 revision of geometry code
- Code optimization to G4Transportation class

Materials, Analysis & Digits/Hits

- Materials:
 - Added new methods for adding elements to a material definition:
 - AddElementsByNumberOfAtoms(...) and AddElementByMassFraction(...)
 - Added new properties for scintillation allowing 3-time constants and a second wavelength shifter in the same material
- Analysis:
 - Major upgrade to include support for multiple files and multiple output types in the same run
 - Enabled handling of automatic min/max axes values in case of log scale
- Digits/Hits:
 - New G4VPrimitivePlotter allowing the user to extend a primitive scorer
 - New ability to create a "probe" scoring mesh with layered mass geometries

Run, Global, Biasing

• Run:

- New tasking system (Beta version) as option
 - Dedicated run manager (G4TaskRunManager) and factory (G4RunManagerFactory), enabling use of tasks for the event loop
 - Based on <u>PTL</u> (Parallel Tasking Library) package, with internal thread-pool and task-queue
 - Fully compatible with Intel/TBB, which can be selected at configuration
- Global:
 - Added possibility to enable backtracing for debugging purpose
 - New profiling settings for <u>TiMemory</u>, allowing for per-{run,event,track,step} profiling, to enable at configuration
- Paramaterisations:
 - New general facilities based on <u>GFlash</u> to facilitate multiple hit (energy & position) creation from fast simulation models

Visualization/Interfaces & Data sets

- Visualization & Interfaces:
 - First alpha-version of a Qt3D visualization driver, based on native Qt rendering
 - Added support for Open Inventor Qt visualisation driver (OIQt); enabled use of OIQt viewer within Qt UI
- Data sets:
 - New versions:
 - G4EMLOW-7.13, G4RadioactiveDecay-5.6
 - G4PhotonEvaporation-5.7, G4ENSDFSTATE-2.3
 - G4PARTICLEXS-3.1, G4RealSurface-2.2

Configuration & Externals

- Cmake:
 - Minimum CMake version 3.8 enforced
 - CMake version 3.12 required for enabling C++20
 - Enabled support of G4Py module activation through GEANT4_USE_PYTHON flag
 - Simplified CMake builds to enable future modularisation of Geant4 libraries
- CLHEP Version 2.4.4.0 required
 - Updated to 2019 SI units/constants:
 - e_SI (electron charge), h_Planck (Planck constant)
 - Avogadro (Avogadro constant), k_Boltzmann (Boltzmann constant)

Examples

- New extended examples
 - <u>Hadr09</u> showing how to use Geant4 as a generator for simulating inelastic hadron-nuclear interactions
 - <u>ParO3</u> demonstrating how to create multiple energy deposits from the fast simulation model
 - <u>Saxs</u> implementing a Small Angle X-ray Scattering (SAXS) experiment; illustrating the usage of molecular interference (MI) of Rayleigh (coherent) scattering of photons in matter
 - <u>Chem6</u> DNA example providing scoring of the radiochemical yield G as a function of time and LET
- New advanced examples
 - <u>FastAerosol</u> showing how to efficiently simulate particle transport through aerosols containing billions of randomly-positioned droplets, using an ordinary workstation
 - <u>Gorad</u> (Geant4 Open-sourced Radiation Analysis and Design) a turn-key application for radiation analysis and spacecraft design
 - <u>HGCal_testbeam</u> based on a Geant4 standalone application for the CMS High Granularity Calorimeter (HGCal) studies, to demonstrate a test beam setup used in HEP experiments, and as a base for the validation studies and comparison with experimental data
 - <u>ICRP110_HumanPhantoms</u> modelling the ICRP110 reference computational human phantoms and calculating the dose in individual voxels and entire organs. The human male phantom is created from a whole-body clinical CT image

Platforms for 10.7

- Linux, gcc-4.9.3 to 10.2, 64 bits
- MacOS 10.15 Catalina, Apple Clang 12.0 (XCode 12.x), 64 bits
- Windows 10, Visual C++ 14.28 (Visual Studio 2019)
- Also tested (sequential/MT):
 - Linux CentOS7, icc-19, clang-8/9/10
 - Linux Ubuntu 18/20, gcc-7.5/9.3
 - MacOS 10.14 Mojave Apple Clang-10/11
 - MacOS 11.1 Big Sur, Apple Clang-12 (Intel chips only)

Thanks!