

Hadronic Highlights of Geant4 10.7

Alberto Ribon CERN EP/SFT

On behalf of the Geant4 Hadronic Physics Working Group

Geant4 Technical Forum, 21 January 2021

Hadronic Data Sets

- Updated :
 - <u>G4PARTICLEXS3.1</u>
 - <u>PhotonEvaporation5.7</u>
 - <u>G4ENSDFSTATE2.3</u>
 - RadioactiveDecay5.6
- Unchanged :
 - <u>G4SAIDDATA2.0</u>
 - G4NDL**4.6**
 - G4INCL**1.0**
 - G4ABLA**3.1**
 - G4TENDL**1.3.2**

(mandatory for FTFP_BERT)
(mandatory for FTFP_BERT)
(mandatory for FTFP_BERT)

(mandatory for FTFP_BERT)

Hadronic String models (1/2)

- For both FTF (Fritiof) & QGS (Quark Gluon String)
 - Completed the extension to charm and bottom hadron projectiles
 - To deal with charm and bottom quarks and diquarks carried out by the heavy projectile hadron, as well as with the possibility of creating charm – anti_charm and bottom – anti_bottom pairs from the vacuum during string fragmentation
 - Simplified approach at low energies below 100 MeV because our intra-nuclear cascade models do not handle charm and bottom hadrons
 - Simplified treatment of the decays of secondary charm and bottom hadrons (*i.e.* created by inelastic nuclear interactions of primary hadrons)
 - Cannot use the "pre-assigned decay" from MC generators as usually done for the primary heavy hadrons (because secondaries are created after the event generation)
 - One single, fully hadronic decay is defined for each "long"-lived charm and bottom hadron, with a simple multi-body phase-space treatment of the decay kinematics

Hadronic String models (2/2)

• FTF model

- Improved agreement of FTF simulations with NA49 experimental data
 - On Pt-Xf correlations of secondaries produced in pp collisions at 158 GeV/c
- Corrected treatment of string direction
- Retuning of Pt in the string fragmentation
- Added protections against numerical instabilities
- Extended FTF configuration interface to include parameters of quark exchange with and without excitation, for baryon and pion projectiles

QGS model

- Improved treatment of antibaryon interactions
 - Better handling of low-mass strings
- Added protections against numerical instabilities

Intra-nuclear Cascade models

- Bertini-like (BERT)
 - Stable, no developments; a few fixes:
 - Fixed non-conservation warnings in sub-threshold reactions
 - Fixed compilation warnings
- Binary (BIC)
 - Stable, no developments, one fix:
 - Fixed memory leak at exit
- Liege (INCLXX)
 - Stable, no developments, one fix:
 - Fixed compilation warnings

Precompound / de-excitation models

- Improved G4NuclearLevelData ; more consistent UI commands
- New data-set : PhotonEvaporation5.7

Radioactive Decay model

- Deprecated old UI commands /grdm/... and introduced new, equivalent ones /process/had/rdm/...
- New data-set : RadioactiveDecay5.6

ParticleHP & LEND models

- Stable, no developments; a few fixes
- Deprecated environmental variables, recommended UI commands
 - Introduced new CMake option GEANT4_BUILD_PHP_AS_HP (replacing the deprecated environmental variable PHP_AS_HP)

Elastic & Quasi-Elastic scattering

- Numerical protection against precision loss in elastic scattering
- Extension for charm and bottom hadrons of :
 - Simple treatment of elastic scattering
 - Chips quasi-elastic (used only in QGS model)

Neutrino interactions

- Added $v_e A$ and $\underline{v}_e A$ total cross sections
- Improved $v_{\mu} A$ final-state model
 - For both neutral and charged current
- Added $\underline{\nu}_{\mu} A$, $\underline{\nu}_{e} A$ final-state models
 - For both neutral and charged current

Others

- Introduced optional coalescence model, useful in particular for Cosmic Ray applications
 - Form deuteron and anti-deuteron from, respectively, proton-neutron and antiproton-antineutron pairs with close momenta
 - To switch it on: /process/had/enableCRCoalescence true
- New UI command to change the default upper energy limit
 - Default: 100 TeV , to change it: /process/had/maxEnergy ...
- New UI command to switch off printing of hadronic information
 - /process/had/verbose 0
- Replaced where possible the use of environmental variables in hadronic models with appropriate UI commands
 - Using consistently the prefix: /process/had/

Cross Sections

- Corrected threshold in gamma-proton cross section
- Added protections in EM dissociation cross section
- Extended G4ParticleInelasticXS to gamma cross section
- New G4PARTICLEXS3.1
 - More accurate cross sections for fusion reactions and for inelastic interactions of neutron, proton, light ions and gamma, for the full energy range
- Introduced optional scaling factors for elastic and inelastic cross sections of hadrons for systematic studies
 - 3 categories: nucleons (p, n), pions (π ±), all others
 - New methods in *G4HadronicParameters* to scale the cross sections
 - ±10% for nucleons & pions; ±15-20% for kaons; ±20-30% for others
 - Bigger variations might be considered at low energies to account for the uncertainties on the shape of the cross section in the threshold and resonance region

Physics Lists (1/2)

- Enabled charm and bottom hadronic physics in nearly all physics lists (in particular those of interest for HEP)
 - Main exceptions: QGSP_BIC , QGSP_BIC_HP , QGSP_BIC_AllHP
 - QGS-based physics lists use QGSP above 12 GeV also for charm and bottom hadrons (and FTFP below 25 GeV)
 - FTF-based physics lists use FTFP for all energies for charm and bottom hadrons, with a simplified approach below 100 MeV
 - No cascade model works for charm and bottom hadrons
- QGS-based physics lists use now QGS above 12 GeV also for hyperons, anti-hyperons, antiproton and antineutron
 - And FTFP below 25 GeV
 - For hyperons, FTFP is used down to 3 GeV, and BERT below 6 GeV

Physics Lists (2/2)

- Physics lists that include G4EmExtraPhysics use now the new low-energy gamma-nuclear final-state model : G4LowEGammaNuclearModel
 - Below 200 MeV ; BERT is used above 199 MeV and below 6 GeV ; QGSP is used above 3 GeV
 - This model is based on precompound de-excitation, and produces isomers and gamma transitions
- Cleanup destruction of physics processes at the end of job; reviewed ownership/deletion of physics models at the end of the run

Hadronic showers (see plots in backup slides)

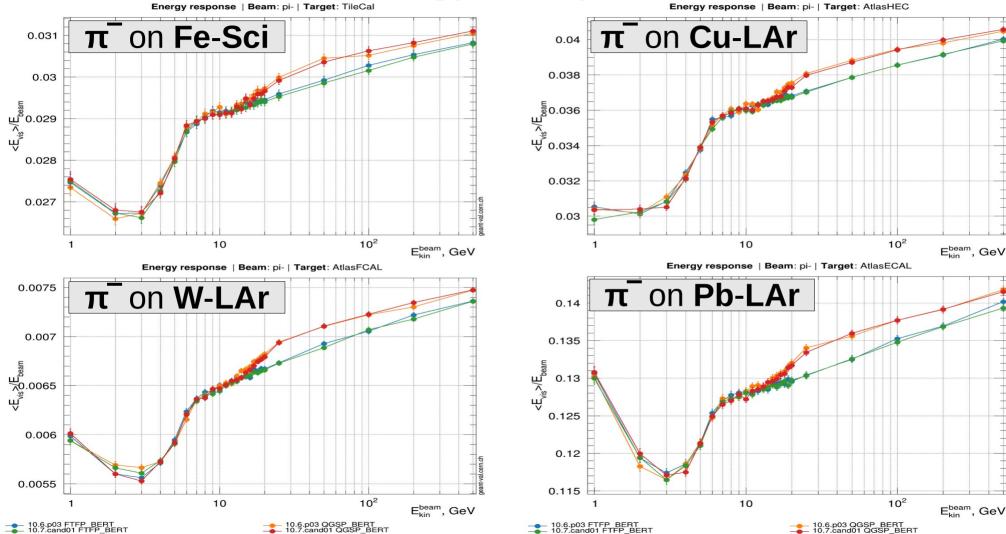
- Stable hadronic showers in G4 **10.7**
 - With respect to G4 10.6.p03
 - Few percent narrower showers for FTF-based physics lists
 - No changes for QGS-based physics lists
 - QGSP_BERT with respect to FTFP_BERT
 - Few percent higher energy response
 - Wider energy fluctuations and worse energy resolution
 - Few percent longer showers
 - 5-10% narrower showers

Reminder: we recommend to fit the Birks quenching coefficient from the h/e test-beam data !

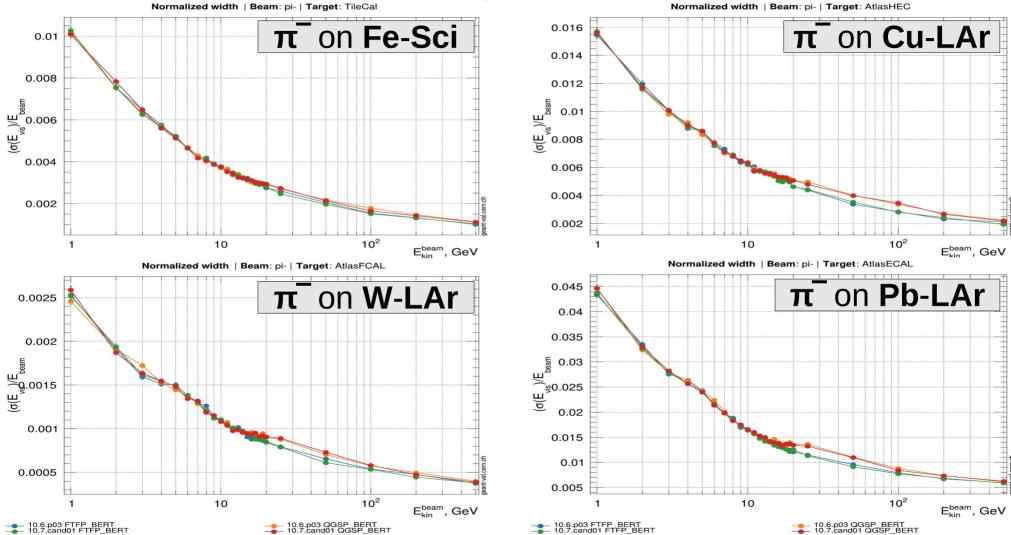
geant-val.cern.ch

- We rely heavily on this tool for testing and validating Geant4
 - For major, minor, patches and internal (reference tags) versions
- The only validation tool in Geant4
- On-going work to extend its coverage
- Under evaluation also by the Fluka-CERN team

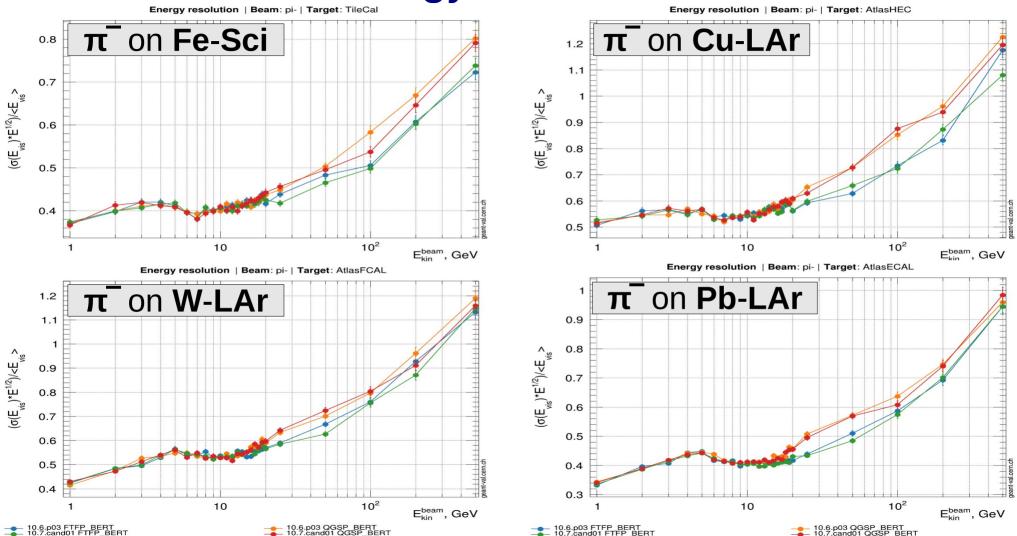
Backup slides

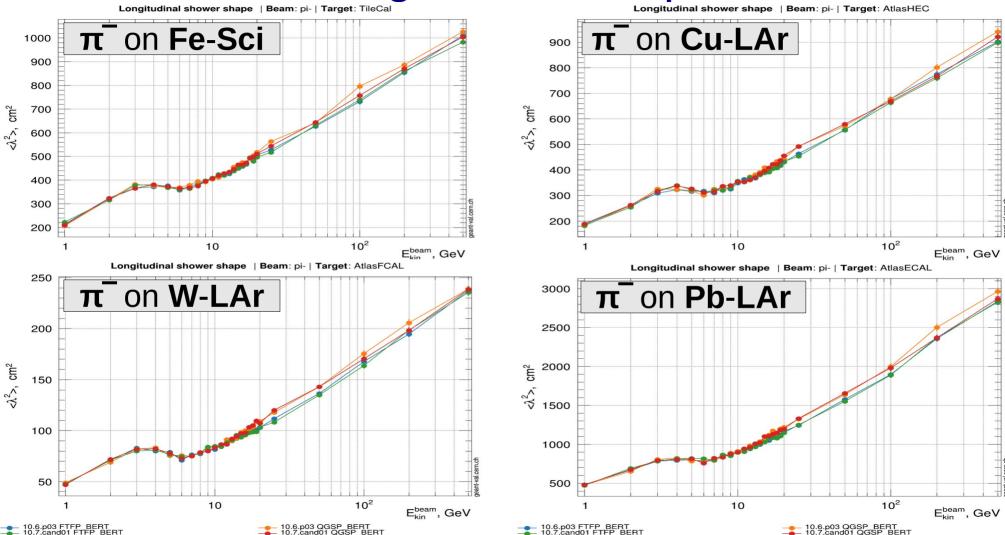

Pion- showers:

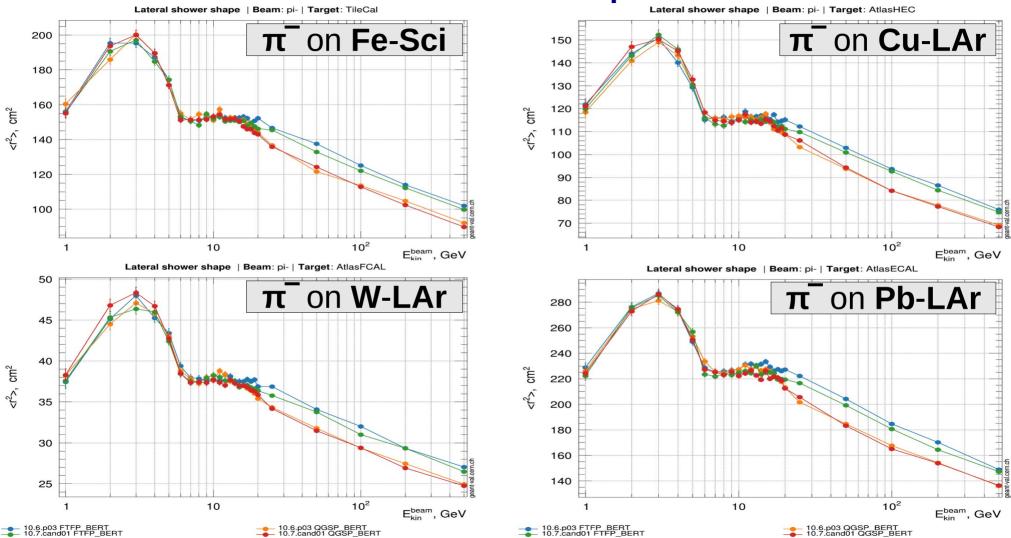
G4 10.7 FTFP_BERT G4 10.6.p03 FTFP_BERT


G4 10.7 QGSP_BERT G4 10.6.p03 QGSP_BERT

Note : conventional Birks treatment (easier and no experimental h/e to fit !)


Energy Response


Energy Width


Energy Resolution

Longitudinal Shape

Lateral Shape

