

hls4mlxPYNQ demo

Intro
● We don’t do much “hands on” hardware

work in this group

● Normally that’s fine, but from time to time
we need to run these things on real FPGAs

● We have the PYNQ boards: they are not
very powerful devices but are easy to use
and good learning tools

– But they may also have a useful role for
low power embedded applications: can
easily stream peripherals (e.g.
cameras, microphones, other sensors)
into FPGA

PYNQ
● The ‘PYNQ ecosystem’ covers

hardware, drivers and Python
APIs to work with Xilinx hardware

● We have the PYNQ-Z2 board

● We’ll be using the Python API
(through notebooks) that should
also adapt to other hardware e.g.
Alveo

ZYNQ
● The PYNQ board has a ZYNQ

SoC as its processor

● It’s a combination of ARM CPU
(Processing System = PS) and
FPGA (Programmable Logic =
PL)

● We’ll run Python notebooks on
the PS, and a NN on the PL

● We have to add some extra code
to communicate between them

Interfaces
● The PYNQ (Actually Zynq) hardware has

multiple interface possibilities

● They all use AXI as the protocol

● Generally… some memory mapping
takes place so that we can read/write to
memory on the PS, and it will be
‘mapped’ to memory on the PL

● We will use the lowest performance
option – but the only one I could get
working so far :)

Wrapper / Pynq backend
● The usual hls4ml flow gives us an IP

core

● We need to provide some extra code to
communicate between this IP core and
the outside world

● This will define the type of interface, and
maybe do some optimizations

– Batching/bursting/buffering, type
casting

● We have a WIP ‘Pynq Backend’ that
adds the most simple wrapper

– https://github.com/thesps/hls4ml/tree
/pynq

void myproject(
 input_axi_t in[N_IN],
 output_axi_t out[N_OUT]
){

 #pragma HLS INTERFACE ap_ctrl_none port=return
 #pragma HLS INTERFACE s_axilite port=in
 #pragma HLS INTERFACE s_axilite port=out

 unsigned short in_size = 0;
 unsigned short out_size = 0;

 //hls-fpga-machine-learning insert local vars

 for(unsigned i = 0; i < N_IN; i++){
 #pragma HLS unroll
 in_local[i] = in[i]; // Read input with cast
 }

 //hls-fpga-machine-learning insert call
 for(unsigned i = 0; i < N_OUT; i++){
 #pragma HLS unroll
 out[i] = out_local[i]; // Write output cast
 }
}

https://github.com/thesps/hls4ml/tree/pynq
https://github.com/thesps/hls4ml/tree/pynq

Workflow
● Thankfully, most of what takes place to make a bitfile is defined by those interface pragmas, & Vivado

figures out which IPs to use to stitch it together

● We’ll go through it once with the Vivado GUI, but there is a Python API for the script-based flow

● Let’s go: on either yavin or geonosis machines, clone this repo and make the conda environment
https://github.com/thesps/pynq_hls4ml/

– $ conda env create -f environment.yml

– $ conda activate pynq

– $ jupyter notebook –no-browser & # note the port (e.g. 8888)

– On another lxplusXYZ: $ ssh -N -f -L 8888:localhost:8888 <geonosis, yavin>

– On your laptop: $ ssh -N -f -L 8888:localhost:8888 <you>@lxplusXYZ.cern.ch

– On your laptop browser, go to: http://localhost:8888 and enter the token printed by Jupyter

https://github.com/thesps/pynq_hls4ml/

Vivado Flow
● Once you get to the “Bitfile time” cell in the notebook, go back to the command line and execute $ vivado &

● We will follow the awesome readme from Giuesseppe here:
https://github.com/fastmachinelearning/tiny-mlperf/tree/master/projects/tinyslider_pynq_z1/vivado_flow/sys

● But with a few simplifications

– Create new board design

– Add Zynq processing system

– Run automation

– Add hls4ml IP to IP repository

– Add hls4ml NN IP to board design (myproject_axi)…

– Run automation

– (Skip address unmap & interface change stuff)

– Create HDL Wrapper

– Generate bitstream!

● Screenshots for each step in following slides

https://github.com/fastmachinelearning/tiny-mlperf/tree/master/projects/tinyslider_pynq_z1/vivado_flow/sys

● Create a project, click “next” on each page until
you reach...

Then click
“next” again,
and then “finish”

Add NN IP
● Click “IP Catalog”
● Right click (in IP Catalog view)
● → Add repository
● → navigate to hls4ml_prj_gui
● Screenshots follow

● Now under ‘IP Integrator’ → Create Block
Design

● Then “Okay” with the default name

● Now we will add IPs (components, basically)
● Search “zynq” in the tab and add the zynq7

processing system
● → In the green tab click “Run Block automation”
● Click “Okay” with default values

● Now hit the “+” add IP again
● Search “myproject” and add “Myproject_axi”
● This is our NN

● In “sources” tab, right click “design 1” and
“generate HDL wrapper”

● Hit “okay” again

● Generate Bitstream!
● Click “Yes” (run synth and implementation first)
● And “okay” one more time...

● Then wait ~10 minutes
● Look in “log” at the bottom to see what’s going

on
● It will synthesize each IP (4 of them), then the

whole board design, then run implementation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

