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Intro
● We don’t do much “hands on” hardware 

work in this group

● Normally that’s fine, but from time to time 
we need to run these things on real FPGAs

● We have the PYNQ boards: they are not 
very powerful devices but are easy to use 
and good learning tools

– But they may also have a useful role for 
low power embedded applications: can 
easily stream peripherals (e.g. 
cameras, microphones, other sensors) 
into FPGA



  

PYNQ
● The ‘PYNQ ecosystem’ covers 

hardware, drivers and Python 
APIs to work with Xilinx hardware

● We have the PYNQ-Z2 board

● We’ll be using the Python API 
(through notebooks) that should 
also adapt to other hardware e.g. 
Alveo



  

ZYNQ
● The PYNQ board has a ZYNQ 

SoC as its processor

● It’s a combination of ARM CPU 
(Processing System = PS) and 
FPGA (Programmable Logic = 
PL)

● We’ll run Python notebooks on 
the PS, and a NN on the PL

● We have to add some extra code 
to communicate between them



  

Interfaces
● The PYNQ (Actually Zynq) hardware has 

multiple interface possibilities

● They all use AXI as the protocol

● Generally… some memory mapping 
takes place so that we can read/write to 
memory on the PS, and it will be 
‘mapped’ to memory on the PL

● We will use the lowest performance 
option – but the only one I could get 
working so far :)



  

Wrapper / Pynq backend
● The usual hls4ml flow gives us an IP 

core

● We need to provide some extra code to 
communicate between this IP core and 
the outside world

● This will define the type of interface, and 
maybe do some optimizations

– Batching/bursting/buffering, type 
casting

● We have a WIP ‘Pynq Backend’ that 
adds the most simple wrapper

– https://github.com/thesps/hls4ml/tree
/pynq
 

void myproject(
    input_axi_t in[N_IN],
    output_axi_t out[N_OUT]
        ){

    #pragma HLS INTERFACE ap_ctrl_none port=return
    #pragma HLS INTERFACE s_axilite port=in
    #pragma HLS INTERFACE s_axilite port=out

    unsigned short in_size = 0;
    unsigned short out_size = 0;

    //hls-fpga-machine-learning insert local vars

    for(unsigned i = 0; i < N_IN; i++){
        #pragma HLS unroll
        in_local[i] = in[i]; // Read input with cast
    }

    //hls-fpga-machine-learning insert call
    for(unsigned i = 0; i < N_OUT; i++){
        #pragma HLS unroll
        out[i] = out_local[i]; // Write output cast
    }
}

https://github.com/thesps/hls4ml/tree/pynq
https://github.com/thesps/hls4ml/tree/pynq


  

Workflow
● Thankfully, most of what takes place to make a bitfile is defined by those interface pragmas, & Vivado 

figures out which IPs to use to stitch it together

● We’ll go through it once with the Vivado GUI, but there is a Python API for the script-based flow

● Let’s go: on either yavin or geonosis machines, clone this repo and make the conda environment 
https://github.com/thesps/pynq_hls4ml/ 

– $ conda env create -f environment.yml

– $ conda activate pynq 

– $ jupyter notebook –no-browser & # note the port (e.g. 8888)

– On another lxplusXYZ: $ ssh -N -f -L 8888:localhost:8888 <geonosis, yavin>

– On your laptop: $ ssh -N -f -L 8888:localhost:8888 <you>@lxplusXYZ.cern.ch

– On your laptop browser, go to: http://localhost:8888 and enter the token printed by Jupyter

https://github.com/thesps/pynq_hls4ml/


  

Vivado Flow
● Once you get to the “Bitfile time” cell in the notebook, go back to the command line and execute $ vivado &

● We will follow the awesome readme from Giuesseppe here: 
https://github.com/fastmachinelearning/tiny-mlperf/tree/master/projects/tinyslider_pynq_z1/vivado_flow/sys

● But with a few simplifications

– Create new board design

– Add Zynq processing system

– Run automation

– Add hls4ml IP to IP repository

– Add hls4ml NN IP to board design (myproject_axi)…

– Run automation

– (Skip address unmap & interface change stuff)

– Create HDL Wrapper

– Generate bitstream!

● Screenshots for each step in following slides

https://github.com/fastmachinelearning/tiny-mlperf/tree/master/projects/tinyslider_pynq_z1/vivado_flow/sys


  



  

● Create a project, click “next” on each page until 
you reach...



  

Then click 
“next” again, 
and then “finish”



  



  

Add NN IP
● Click “IP Catalog”
● Right click (in IP Catalog view) 
● → Add repository
● → navigate to hls4ml_prj_gui
● Screenshots follow



  



  



  



  

● Now under ‘IP Integrator’ → Create Block 
Design

● Then “Okay” with the default name



  



  

● Now we will add IPs (components, basically)
● Search “zynq” in the tab and add the zynq7 

processing system
● → In the green tab click “Run Block automation”
● Click “Okay” with default values



  



  



  

● Now hit the “+” add IP again
● Search “myproject” and add “Myproject_axi”
● This is our NN



  



  



  

● In “sources” tab, right click “design 1” and 
“generate HDL wrapper”

● Hit “okay” again



  



  

● Generate Bitstream!
● Click “Yes” (run synth and implementation first)
● And “okay” one more time...



  



  

● Then wait ~10 minutes
● Look in “log” at the bottom to see what’s going 

on
● It will synthesize each IP (4 of them), then the 

whole board design, then run implementation
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