= PRINCETON (g iris
UNIVERSITY hep

PyHEP Numba Tutorial

or

Getting Numba to Do What You Want

Jim Pivarski

Princeton University — IRIS-HEP

February 3, 2021

1/8

To optimize or not to optimize?

Scientific computing is of two minds about accelerating code:

“Tweaking performance should take a back seat to
the science.”

“If it doesn’t run within time/memory constraints,
we can't perform this measurement.”

2/8

To optimize or not to optimize?

Scientific computing is of two minds about accelerating code:

“Tweaking performance should take a back seat to
the science.”

“If it doesn’t run within time/memory constraints,
we can't perform this measurement.”

Both are true, so it's a balance. The objective: “time to insight.”

2/8

Compilation

Roughly speaking, compilation makes code faster.

3/8

Compilation

Roughly speaking, compilation makes code faster.

More precisely, it removes hurdles to take the slowness out of code.

» Avoids type-checking every value in a loop over identically typed data.
» Avoids following pointers from objects to objects.
» Avoids nonsequential memory access.

» Avoids translating virtual machine
instructions into real instructions.

» Avoids garbage collector searches
for many small objects.

3/8

Compilation is not a monolithic thing

Though often thought of as single step applying all optimizations,

ct+ my_source_code.cpp -0 now_its_faster

compilation can be piecemeal and applied at any time.

IAENG International Journal of Computer Science, 32:4, 1ICS_32_4_19

How to make LISP go faster than C
Didier Verna®
Abstract statically (bence known at compile-time], just as

you would do in €
Contrary to popular belief, Lise code can be very ef.

ficient today: it can run as fast as equivalent C code Safety Levels While dynamically Lisp code
o even faster in some cases. I this paper, we explain leads o dynamic type checki un-time, it
how to tune Lisp code for performance by introducing is possible to instruct the compilers to bypass

the proper type declarations, using the appropriate all safety checks in order to get optimum per-
date structures and compiler information. We zlso formance

explain how efficiency is achicved by the compilers.

These techniques are applied Lo simple image process-
ing algorithms in order to demonstrate the announced
performance on pixel access and arit hmetic operations
in both languages.

Data Structures While Lise is maml\ known for
its basement on list
Lise standard features ve
such as specialized arrays, structs or hash tables

making lists almost completely obsolete. 4/8

hcion, duta types

Keywonds: Lisp, C, Numerical Caleulus, Image Pro-

Compilers are everywhere

» Python is “compiled” from source code to numeric bytecodes that run in a
virtual machine. (At least it isn't scanning the source code over and over!)

» re.compile("...") — regular expression to finite state machine.
» struct.Struct ("...") — same thing for parsing bytes.
» numexpr.evaluate ("...") — NumExpr's virtual machine for

evaluating math formulas is faster than NumPy.

» ROOT.gInterpreter.Declare("...") — ROOT's Cling compiles
strings of C++ code to machine-native bytecode instructions.

» rdf.Define("...") — ROOT's RDataFrame also uses Cling.
» Numba and PyPy compile Python to machine-native bytecode instructions.

» Julia is a language designed around this just-in-time (JIT) compilation.
5/8

Compilers are everywhere

» Python is “compiled” from source code to numeric bytecodes that run in a
virtual machine. (At least it isn't scanning the source code over and over!)

» re.compile("...") — regular expression to finite state machine.
» struct.Struct ("...") — same thing for parsing bytes.
» numexpr.evaluate ("...") — NumExpr's virtual machine for

evaluating math formulas is faster than NumPy.

» ROOT.gInterpreter.Declare("...") — ROOT's Cling compiles
strings of C++ code to machine-native bytecode instructions.

» rdf.Define("...") — ROOT's RDataFrame also uses Cling.
» Numba and PyPy compile Python to machine-native bytecode instructions.

» Julia is a language designed around this just-in-time (JIT) compilation.
5/8

Just-in-time (JIT) compilers for Python

2 Numba

Runs within normal CPython (can be
used with other Python libraries).

Only speeds up functions labeled with
the @numba . jit decorator.

Only a subset of Python features
and functions can be JIT-compiled.

Gains are often factors of 100’s.

\:\ pYpY

Replaces the CPython process; not all
libraries work /versions of Python exist.

Speeds up the whole program, without
any modifications.

All Python features are JIT-compiled.

Gains are often factors of several.

6/8

Just-in-time (JIT) compilers for Python

2 Numba

Runs within normal CPython (can be
used with other Python libraries).

Only speeds up functions labeled with
the @numba . jit decorator.

Only a subset of Python features

and functions can be JIT-compiled.

Gains are often factors of 100’s.

\:\ pYpY

Replaces the CPython process; not all
libraries work /versions of Python exist.

Speeds up the whole program, without
any modifications.

All Python features are JIT-compiled.

Gains are often factors of several.

6/8

What kind of code can Numba accelerate?

» Types must be fully known before the code runs.
» Objects must be replaceable with memory-contiguous values.

» Functions must have or be built out of low-level equivalents.

7/8

What kind of code can Numba accelerate?

» Types must be fully known before the code runs.
» Objects must be replaceable with memory-contiguous values.

» Functions must have or be built out of low-level equivalents.

Therefore, only Python libraries that have been specially prepared
for Numba work in Numba.

7/8

What kind of code can Numba accelerate?

» Types must be fully known before the code runs.
» Objects must be replaceable with memory-contiguous values.

» Functions must have or be built out of low-level equivalents.

Therefore, only Python libraries that have been specially prepared
for Numba work in Numba.

Numba optimizes NumPy out-of-the-box, and Awkward Array has
been extended as well.

(We're also working on other Scikit-HEP libraries, like Vector and Hist.)

7/8

Numba fits into Python's optimization mindset

Most scientific libraries for Python split into a “fast math” part and
a “slow bookkeeping” part. Optimization effort must be focused.

8/8

Numba fits into Python's optimization mindset

Most scientific libraries for Python split into a “fast math” part and
a “slow bookkeeping” part. Optimization effort must be focused.

Numba isn't about accelerating everything, it's about identifying
the part that has to run fast and fixing it.

8/8

Numba fits into Python's optimization mindset

Most scientific libraries for Python split into a “fast math” part and
a “slow bookkeeping” part. Optimization effort must be focused.

Numba isn't about accelerating everything, it's about identifying
the part that has to run fast and fixing it.

However, Numba errors can be hard to understand and resolve.

8/8

Numba fits into Python's optimization mindset

Most scientific libraries for Python split into a “fast math” part and
a “slow bookkeeping” part. Optimization effort must be focused.

Numba isn't about accelerating everything, it's about identifying
the part that has to run fast and fixing it.

However, Numba errors can be hard to understand and resolve.

That’s what this tutorial is about:
how to make Numba happy.

8/8

