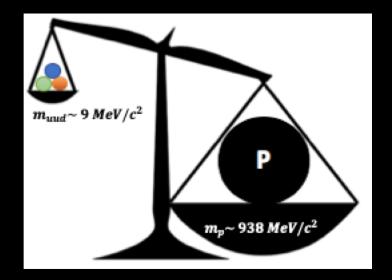


Charged Pion Form Factor – A Unique Precision Experiment at Jefferson Lab

Ali Usman


University of Regina

2021 CAP Virtual Congress

Physics Motivation

- Two well known hadronic states:
 - > Baryons ($qqq \text{ or } \overline{q}\overline{q}\overline{q}$)
 - > Mesons ($q\overline{q}$)
- Interactions of quarks and gluons are described by Quantum Chromodynamics (QCD).

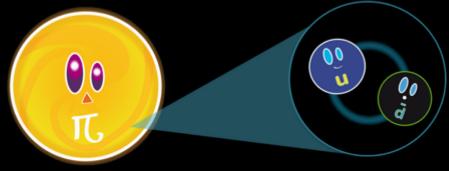
Open Questions

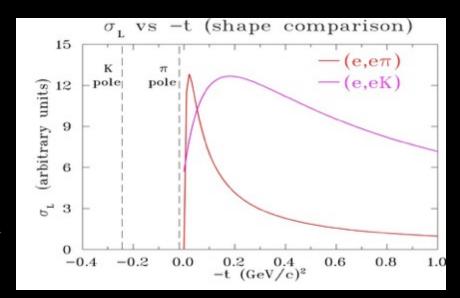
- How fundamental properties of hadrons arise from their constituent quarks and gluons?
- Which theoretical model precisely predicts the parton (quark-gluon) interactions in color confinement regime?
- > Mesons give an ideal testing ground for our understanding of bound $q\overline{q}$ system.
- Form Factor describes transverse spatial position of partons within hadrons.

Pion Form Factor

- Pion is lightest meson with only two valence quarks (up and down).
- \succ In pQCD, F_{π} can be written as

 $Q^2 F_\pi \left(Q^2 \right) \rightarrow 16\pi \alpha_s(Q^2) f_\pi^2 \qquad (Q^2 \rightarrow \infty)$


- At low Q², an experimentally accessible non-pQCD process dominates quark-gluon interactions.
- > Exclusive Pion Electroproduction


 $e^- + p
ightarrow e^{-\prime} + \pi^+ + n$

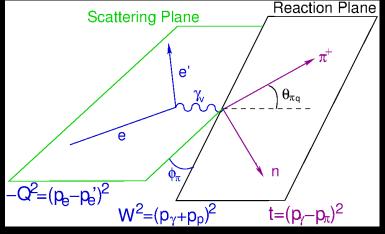
 \succ In Born term model F_{π} appears as

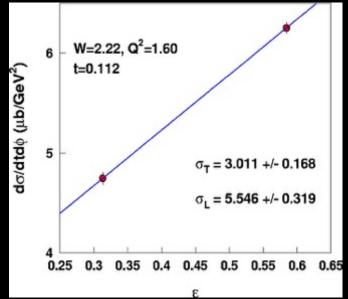
 $\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}(t) Q^2 F_{\pi}^2(Q^2,t)$

Scattering from virtual pion cloud dominates at low -*t*, need to measure σ_L through L/T separation. 6/10/21 Ali Usman

Rosenbluth (L/T) Separation

- → "Rosenbluth Separation technique" is used to separate σ_L and σ_T terms.
- > In parallel kinematics (i. e. $\theta_{\pi q} = 0$)


$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt}$$

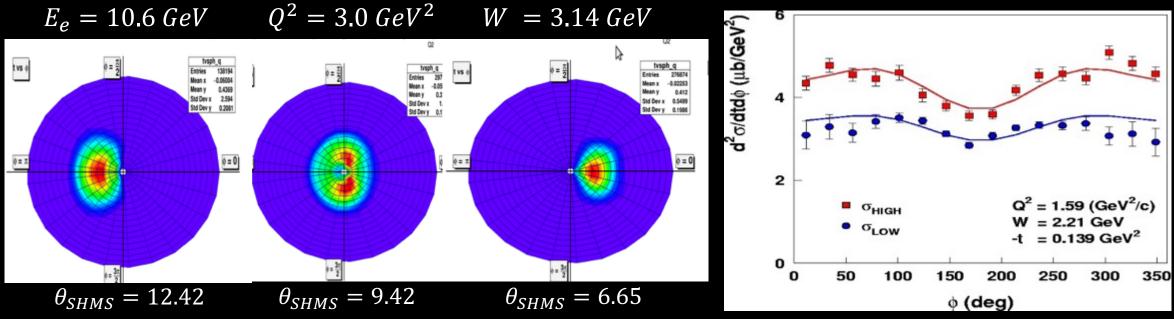

> Here " ϵ " is polarization of virtual photon

$$\epsilon = \left[1 + 2\frac{\left(E_e - E_{e'}\right)^2 + Q^2}{Q^2} \cdot \tan^2 \frac{\theta_{e'}}{2}\right]^{-1}$$

> Cross-section is separated by performing two scattering measurements with different " ϵ " value.

$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{\epsilon_1 - \epsilon_2} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}$$

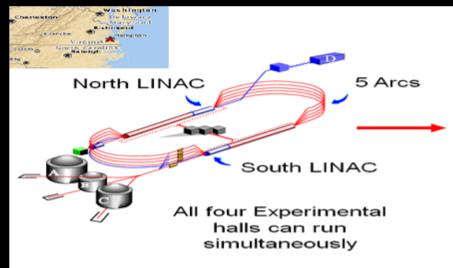
6/10/21



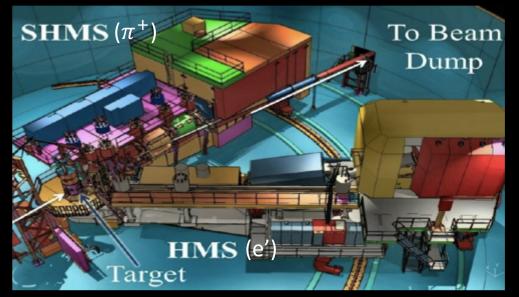
L/T/LT/TT Separated Cross-Section

> For $\theta_{\pi q} \neq 0$, cross-section can be decomposed into four structure functions.

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

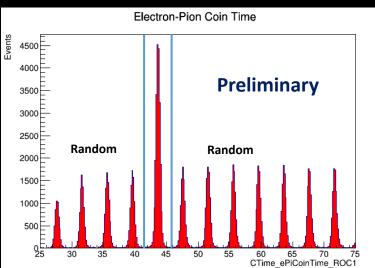

To study t-dependence of cross-section at fixed Q² and W, we need to take data at non-parallel kinematics.

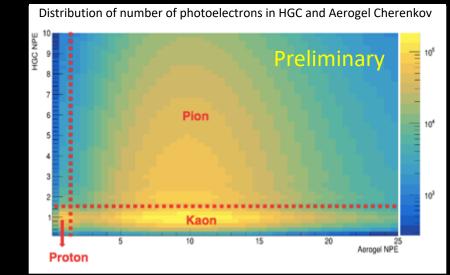
Thomas Jefferson National Accelerator Facility



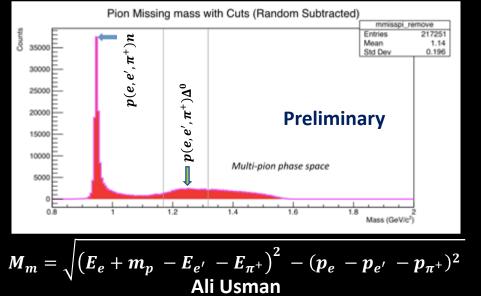
- Located in Newport News, VA
- Consists of two superconducting electron LINACs.
- > Capable of delivering a 12 GeV electron beam of up to 200 μA .

Hall C


- Specifically designed to measure precise cross-sections.
- Two advanced rotatable magnetic spectrometers (HMS and SHMS).
- Particles of specific momentum are studied by using a magnet system.



Data Analysis

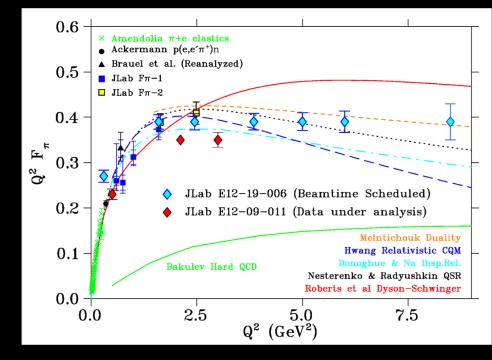


Particle Identification

Missing Mass

$$E_e = 10.6 \ GeV$$

 $Q^2 = 3.0 \ GeV^2$
 $W = 3.14 \ GeV$


F_{π} Results and Projections

 \succ F_{π} is a key variable in our understanding of strong QCD.

> Two proposed experiments at Jefferson Lab Hall C will extend current F_{π} results up to Q^2 of 8.5 GeV².

E12-09-011

- Data Collected in 2018-19
- Analysis in progress
- Results expected in 2023-24

E12-19-006

- Data collection scheduled in 2021-22
- Results will be published in ~2025-26.

This is the beginning of exciting QCD physics era which extends beyond Jefferson Lab

Ali Usman

Collaborators

This research is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2021-00026