6–11 Jun 2021
Underline Conference System
America/Toronto timezone
Welcome to the 2021 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2021!

(I) Flow-Through Z-Pinch Research at Fuse

8 Jun 2021, 17:00
25m
Underline Conference System

Underline Conference System

Invited Speaker / Conférencier(ère) invité(e) Symposia Day (DPP) - Low temperature plasmas/Fusion plasmas (magnetic and inertial confinement)/ Laser plasmas/Basic plasmas TS-3 Plasma Physics Symposium (DPP) / Symposium de physique des plasmas (DPP)

Speaker

Dr Raymond Golingo (Fuse)

Description

Flow-through Z-pinches were first discovered over 50 years ago, manifesting themselves as a stable, pinch-like structure that persisted for 100 us in the Newton-Marshal gun experiments at LANL in the late 1960’s. Linear stability analysis performed by Uri Shumlak in the 1990’s showed that when dV_z/dr > 0.1 k V_A the kink mode could be stabilized in a Z-pinch plasma. Experimental work over the last couple of decades have shown that Z-pinches can be stabilized when the sheared axial flow exceeds this threshold. Quasi-steady-state Z-pinches existed near the axis of the assembly region for 20-80 us. The instability growth time from these Z-pinches was about 10 ns. Recent results from the sheared-flow Z-pinch experiment at the University of Washington, FuZE, have shown it may be possible to achieve a thermonuclear fusion burn. The FuZE device achieved 10 us long fusion burns along 30 cm of the Z-pinch plasma. Using adiabatic scaling relationships, it may be possible to build a Q=6 fusion reactor using the traditional Marshall gun approach. The formation and sustainment method relies on creating a neutral gas reserve that can be continuously ionized, supplying the stabilizing plasma flow to the Z-pinch throughout the current pulse. Creating the optimized neutral gas fill profile requires tedious experimentation. Fuse Energy Technologies will be studying the scaling towards a reactor by forming and sustaining flow-through Z-pinches using a new technique. The deflagration ionization process will be replaced with an array of plasma injectors. This novel technique will allow better control of the mass flow into the Z pinch. This process may allow for better comparisons with the scaling relationships. Previous work, recent simulation and experimental results from the Fuse devices will be presented.

Primary author

Co-authors

Presentation materials

There are no materials yet.