Measuring Single Event Upset Cross Sections and Other Radiation Effects in Readout Electronics for the ATLAS Inner Tracker Upgrade

2021 CAP Virtual Congress – June 6–11, 2021 R1-8 Test Facility II (PPD) Session – June 10, 2021

Presented by Matthew Basso (University of Toronto) (Indico page link)

Introduction

- For the High-Luminosity Upgrade of the LHC (HL-LHC) [1], ATLAS is upgrading its silicon tracking detector as part of the Inner Tracker (ITk) Upgrade [2, 3]
 - Tracker will have improved granularity to handle increased hit occupancy
 - Tracker will be radiation hard to operate in the harsh HL-LHC conditions
 - O(10) Mrad dose over the lifetime of the ITk
- This talk will describe the performance of the ITk's readout ASICs in testbeams performed at TRIUMF's Proton Irradiation Facility (PIF)
 - Performed in August and December 2020, each with 480 MeV protons approximately 48 hours worth of runtime data

ABCStar ASICs

- ATLAS Binary Chip (ABCs) are the front end readout ASICs for ITk strip modules [4]
 - Takes analog signals and digitizes them (256 channels)
 - ABCStar ASICs are the most recent "major" revision and the version to be used in production
 - Prototype version: V0 (worked well)
 - Newly available (production) version: V1

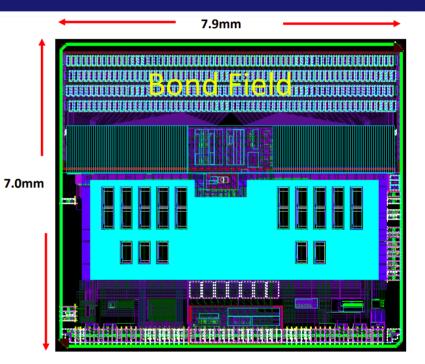


Image taken from Slide 7 of Mitch Newcomer's presentation at FE Electronics 2018 [5]

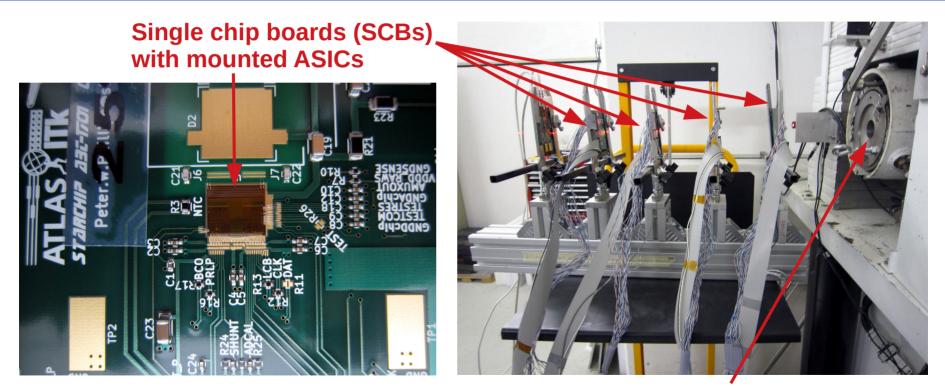
Radiation Effects in ASICs

- ASICs are generally radiation hard, but can experience single event effects (SEEs upsets, latches, ...) or digital current enhancement (increased load on power supplies)
- **Single event upsets (SEUs)**: ASICs store digital values (0/1) instances of radiation can "flip" bits from 0→1 or 1→0
 - Recoverable however, these bit flips can still break internal machinery (e.g., send chip into low-power mode) or result in wrong outputs (e.g., fake or masked hits)
 - Number of SEUs measured \propto total dose received
 - We want to quantify the **SEU cross section** in ABCstar ASICs

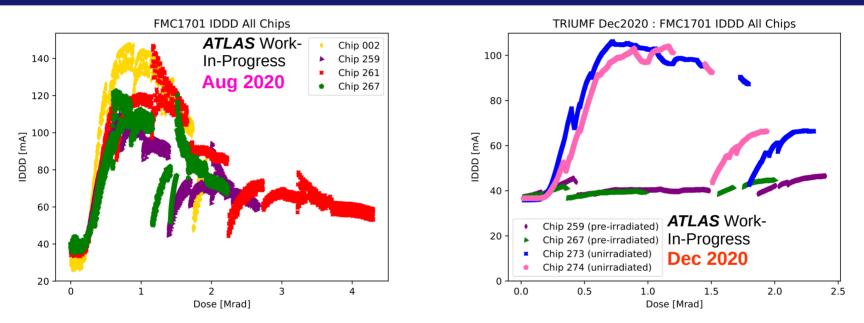
ABCStar Registers and Triplication

- A key difference between V0 and V1 ABCStar ASICs is the **triplication** of all 32-bit registers
 - Store configuration, counters, etc.
- Triplication replicates the logic for each register 3 times, and the 3 replicates vote for the value of each register [6]
 - Protects the register from SEUs in one of the replicates we want to verify this
 - See pictorial representation in Backup
- Front-end buffer is **not** triplicated for either
 - Stores hit information

Register type	Number of registers
SCReg	1
ADCS	3~(6)
MaskInput	8
CREG	2(7)
STAT	7~(5)
HPR	1
TrimDAC	40
CalREG	8
HitCountREG	64


Un-bracketed numbers correspond to V1 chips, bracketed numbers correspond to V0 chips – see Backup for descriptions

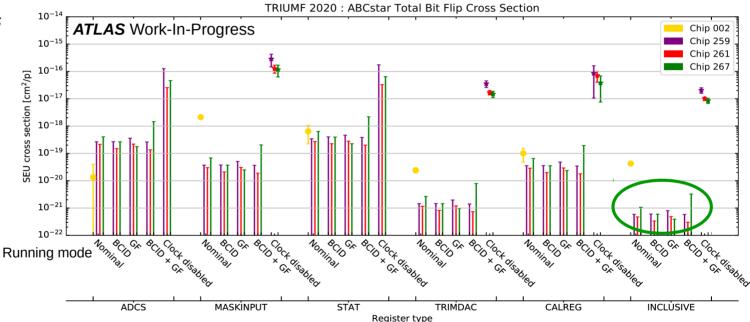
ASICs Tested @ **TRIUMF**


Chips tested in August 2020			Chips tested in December 2020						
Chip	Generation	Distance [cm]	Dose [Mrad]	$\frac{\rm Fluence}{\rm [p/cm^2]}$	Chip	Generation	Distance [cm]	Dose [Mrad]	$\frac{\text{Fluence}}{[\text{p/cm}^2]}$
261	V1	18.8	4.30	1.18×10^{14}	259	V1	43.5	2.48	6.80×10^{13}
002	$\mathbf{V0}$	31.0	3.34	$9.17 imes 10^{13}$	273	V1	46.0	2.38	6.55×10^{13}
259	V1	44.0	2.67	$7.33 imes 10^{13}$	267	V1	56.0	2.07	5.67×10^{13}
$\frac{259}{267}$	V1	56.3	2.23	6.13×10^{13}	274	V1	58.5	2.00	5.49×10^{13}

- Two testbeams: August (*needed* to test V0 vs. V1) and December 2020 (*opportunity*: more statistics)
- Measured digital/analog currents pulled by the ASICs
 - Chips 259+267 common to both: useful for testing the effect of pre-irradiation on digital currents
- <u>SEU measurement</u>: registers for all chips filled in predictable ways and repeatedly read out
 - By comparing expected payloads to what's measured, we can identify SEUs (examples in Backup)

Testbeam Setup @ TRIUMF PIF

Digital Currents with Protons: August vs. December 2020


Consistent with ABC130 results (Sec. 4.10 of [4]): Total Ionizing Dose (TID) bump in digital current near 1 Mrad (~100% increase in current – major problem for detector cooling) → Mitigated by pre-irradiation (i.e., Chips 259+267 in right plot)

August 2020 Register Cross Sections

Bars without data points correspond to upper limits assuming 1 SEU (more details on calculation in Backup)

Clock disabled running mode **enhances** SEU cross section (effectively switches off triplication)

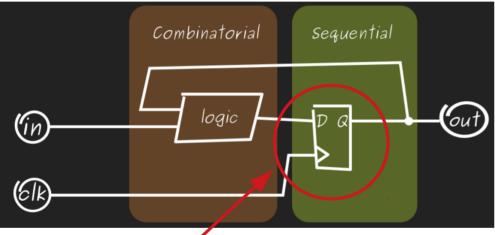
Cross section normalized to total fluence (protons/cm²)

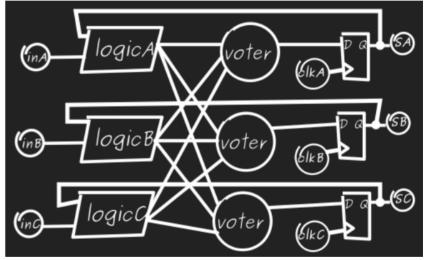
V1 chips saw 0 SEUs out of ~20M bits, upper limit assuming 1 SEU: 3.90 x 10⁻²⁴ cm²/p V0 chip saw 389 SEUs out of ~3M bits, cross section: (4.24 ± 0.07) x 10⁻²⁰ cm²/p

Summary

- Presented an overview of the ABCStar testbeams in August and December 2020 at TRIUMF
 - Pre-irradiating ASICs mitigates the increase in digital current with TID
 - Triplication of registers works as expected: no SEUs measured for V1 chips in triplicated registers
- Analysis of front-end (physics) packets is ongoing (considerable amount of raw FPGA data: ~300 GB)
- Parallel analysis of testbeam data for ABCStars acquired from Louvain, Belgium with heavy ions
 - Examines the response of the ASICs to different energy transfers

References


- [1] I. Béjar Alonso *et al.*, *High-Luminosity Large Hadron Collider (HL-LHC): Technical design report*, tech. rep. CERN-2020-010, CERN, Geneva (2020).
- [2] ATLAS Collaboration, *Technical Design Report for the ATLAS Inner Tracker Pixel Detector,* tech. rep. CERN-LHCC-2017-021, ATLAS-TDR-030, CERN, Geneva (2017).
- [3] ATLAS Collaboration, *Technical Design Report for the ATLAS Inner Tracker Strip Detector*, tech. rep. CERN-LHCC-2017-005, ATLAS-TDR-025, CERN, Geneva (2017).
- [4] L. Poley, C. Sawyer, et al., The ABC130 barrel module prototyping programme for the ATLAS strip tracker, J. Instrum. **15** (2020) P09004.
- [5] M. Newcomer, *Front-end chips for ATLAS ITK upgrade*, Front End Electronics 2018, Orford, Québec, Canada (2018).
- [6] S. Kulis, Single Event Effects mitigation with TMRG tool, J. Instrum. **12** (2017) C01082.


Register Triplication: Pictorially

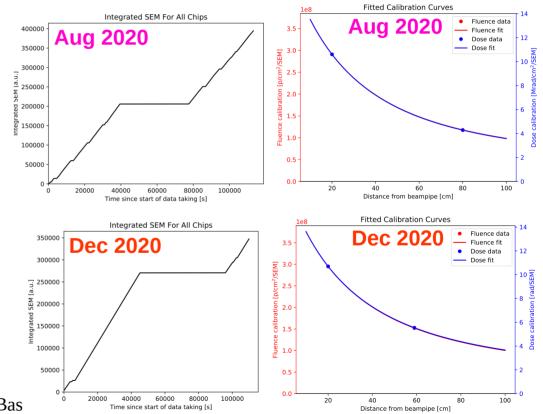
Untriplicated register

Flip-flop reads D on rising clock edge, outputs at Q on falling clock edge

Triplicated register

Voter takes majority (e.g., $[1, 0, 1] \rightarrow 1$)

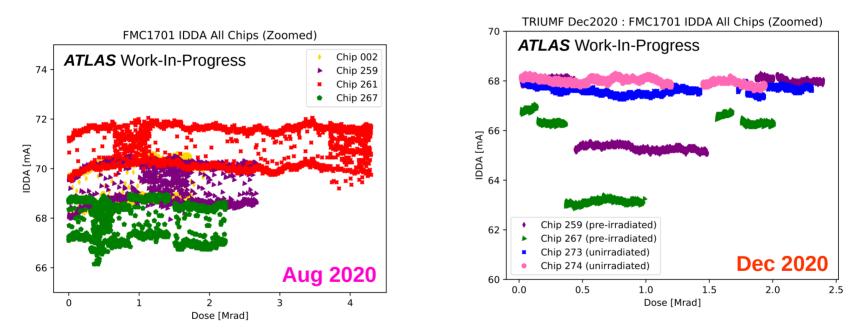
Images obtained from Slide 12 and Slide 32 of Stefan Biereigel's and Szymon Kulis' presentation on TMRG (December 2019, Leipzig – also see the TMRG webpage with CERN Microelectronics)


Examples of SEUs in a Register

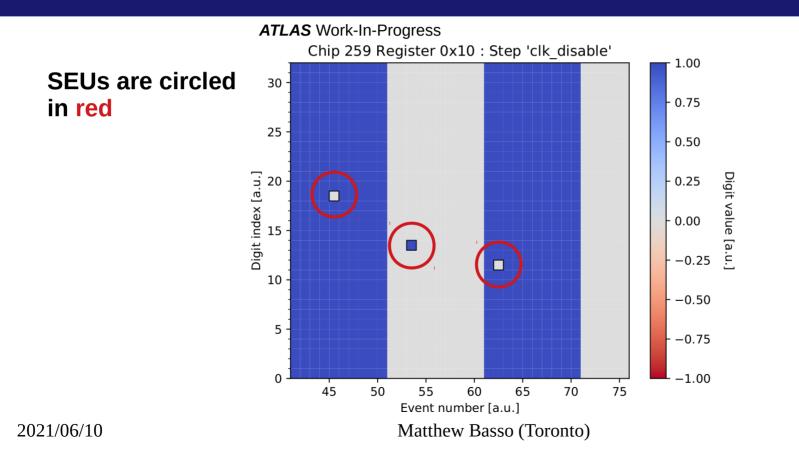
Register type	Description	Number of registers
SCReg	Special/control	1
ADCS	ADC monitoring	3~(6)
MaskInput	Mask for each channel	8
CREG	Digital config	2(7)
STAT	Runtime statistics/counters	7~(5)
HPR	High priority status codes	1
TrimDAC	Trim for each channel	40
CalREG	Calibration mask	8
HitCountREG	Cluster info for each channel	64

Un-bracketed numbers correspond to V1 chips, bracketed numbers correspond to V0 chips

Dose and Fluence Calculation


- PIF @ TRIUMF provides SEM (i.e., particle) counts – all chips see the same integrated SEM
- Linear fit fluence/SEM and dose/SEM vs. 1/R² where R is the radial distance from the beamline
- calibration(R = chip position) * SEM(time) = dose/fluence(time)

Red/blue curves lie on top of one another


Matthew Bas

Analog Currents with Protons: August vs. December 2020

Consistent with ABC130 results (Sec. 4.10 of [4]) - 70 mA analog current (flat in dose) - drops in current for Chips 259+267 for December likely due to communication timeouts

Examples of SEUs in a Register

18

SEU Cross Section Calculation

• If we have $n_{0\rightarrow 1} \to 1$ bit flips and $n_{1\rightarrow 0} \to 0$ bit flips and measure a total of $N_{packets}$ 32-bit registers, then the SEU cross section is calculated as:

$$\sigma_{\rm SEU} = \frac{1}{\phi} \times \frac{n_{0 \to 1} + n_{1 \to 0}}{32 \times N_{\rm packets}}$$

Integrated fluence ϕ is counted **only** between the **write** and **read** times of each register

• We can also calculate a 95% confidence interval:

$$\Delta_{\sigma_{\rm SEU}} = \frac{1.96}{\phi} \times \sqrt{\frac{R \times (1-R)}{32 \times N_{\rm packets}}} \text{ where } R = \frac{n_{0\to 1} + n_{1\to 0}}{32 \times N_{\rm packets}}$$

2021/06/10

August 2020 Register Cross Sections: In Numbers

ATLAS Work-In-Progress

ATLAS WOR-III-FTOGRESS							
Chip	Running mode	$n_{0 \rightarrow 1}$	$n_{1 \rightarrow 0}$	$32 \times N_{\text{packets}}$	$\phi \ [{ m p/cm^2}]$	$\sigma_{ m SEU}\pm\Delta_{\sigma_{ m SEU}}\ [m cm^2/p]$	
002	Nominal	12	377	3166816	2.90×10^{15}	$(4.24 \pm 0.07) \times 10^{-20}$	
259	Nominal BCID GF BCID + GF Clock disabled	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{array} $	0 0 0 0 69	$\begin{array}{c} 1687328 \\ 1634624 \\ 1428352 \\ 1642048 \\ 67008 \end{array}$	$\begin{array}{c} 1.01\times 10^{15}\\ 1.02\times 10^{15}\\ 8.74\times 10^{14}\\ 1.05\times 10^{15}\\ 5.24\times 10^{13} \end{array}$	$ \begin{array}{c} *5.88 \times 10^{-22} \\ *6.03 \times 10^{-22} \\ *8.01 \times 10^{-22} \\ *5.82 \times 10^{-22} \\ (2.05 \pm 0.10) \times 10^{-17} \end{array} $	
261	Nominal BCID GF BCID + GF Clock disabled	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 12 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 166 \end{array}$	$1434336 \\ 1707328 \\ 1453536 \\ 1857024 \\ 124544$	$\begin{array}{c} 1.47 \times 10^{15} \\ 1.74 \times 10^{15} \\ 1.41 \times 10^{15} \\ 1.78 \times 10^{15} \\ 1.42 \times 10^{14} \end{array}$	$\begin{array}{c} *4.75\times 10^{-22}\\ *3.37\times 10^{-22}\\ *4.86\times 10^{-22}\\ *3.03\times 10^{-22}\\ (1.00\pm 0.04)\times 10^{-17}\end{array}$	
267	Nominal BCID GF BCID + GF Clock disabled	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{array} $	0 0 0 0 79	$\begin{array}{c} 1189056 \\ 1853312 \\ 2227296 \\ 713600 \\ 122816 \end{array}$	$\begin{array}{l} 7.85\times10^{14}\\ 9.05\times10^{14}\\ 1.14\times10^{15}\\ 4.30\times10^{14}\\ 7.76\times10^{13} \end{array}$	$ \begin{array}{c} *1.07 \times 10^{-21} \\ *5.96 \times 10^{-22} \\ *3.93 \times 10^{-22} \\ *3.26 \times 10^{-21} \\ (8.60 \pm 0.36) \times 10^{-18} \end{array} $	

Inclusive in registers, asterisks refer to upper limits **assuming 1 SEU**