Constraints on dark matter models using a fast simulation of the ATLAS detector

SAMANTHA TAYLOR

CAP CONGRESS - JUNE 9^{TH} 2021

SUPERVISOR: MICHEL LEFEBVRE

University of Victoria

Introduction

Motivation

- Astronomical observations reveal the existence of dark matter
- The nature of dark matter is not explained by our current knowledge of physics

Detection methods

- Astronomical observations, ie: galaxy rotational curves, velocity dispersion, gravitational lensing
- Direct detection, ie: dark matter nuclei scattering
- Indirect detection, ie: products of dark matter decay/annihilation
- Production of dark matter, ie: dark matter as a product from particle collisions

Interested in *production* of dark matter at the LHC

LHC and ATLAS

LHC

- pp beam collisions
- Most recent results from Run II (2015-2018) at 13 TeV
- Collection of 140 fb⁻¹ of data so far
- Run III to operate from 2021-2024 at 13-14 TeV

ATLAS

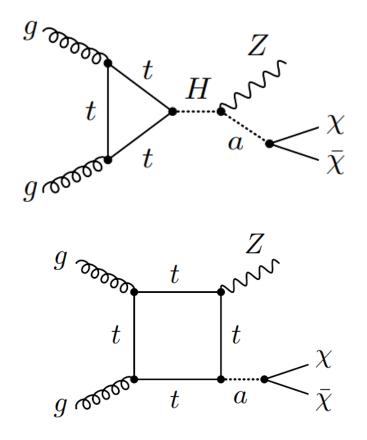
- $\,\circ\,$ Cylindrical detector with nearly 4π coverage
- Searching for dark matter particle, no evidence yet
- Use data collected to *exclude dark matter models*
- *Missing transverse momentum* is usually the main discriminant variable

Two Higgs doublet model + pseudoscalar

Mono-Z signature: large E_T^{miss} and Z boson

Z decays to two same-flavour leptons (e^+e^- or $\mu^+\mu^-$)

Discriminant variable is $m_T(ZZ)$


$$m_{T_{ZZ}}^2 = \left(\sqrt{m_Z^2 + |\vec{p}_T^{\ \ell\ell}|^2} + \sqrt{m_Z^2 + |\vec{E}_T|^2}\right)^2 - \left|\vec{p}_T^{\ \ell\ell} + \vec{E}_T\right|^2$$

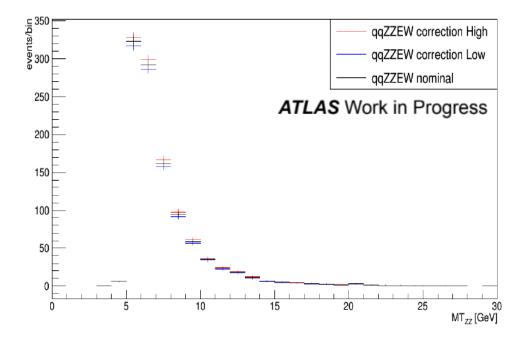
gg and bb-induced production, here showing two gg-induced leading order diagrams

5 free parameters:

- $m_A = m_H = m_{H\pm} \rightarrow \text{Mass of } A, H, H^{\pm}$
- $m_a \rightarrow Mass of pseudoscalar a$
- $\sin\theta \rightarrow \text{Mixing angle between } A, a$
- $\tan\beta \rightarrow \text{Ratio of VEVs of Higgs doublets}$
- $m_{\chi} \rightarrow \text{Dark matter mass}$

 $p + p \rightarrow Z(\rightarrow l^+ l^-) + \chi \bar{\chi}$

Background distributions and systematics


SM background processes

- Most dominant include ZZ, WZ, Z+jets, Non-resonant (ex: WW, Wt, $t\bar{t}$)
- Selection cuts are made to reduce background as much as possible while maximizing signal
- Distributions obtained from full ATLAS analysis

Background	Percent contribution	Estimation procedure
ZZ	59%	Simulation
WZ	25%	Simulation and data
Z + jets	8%	Data
Non-resonant	8%	Simulation and data
ttV(V), VVV	$<\!1\%$	Simulation

Systematics classified as either theoretical or experimental

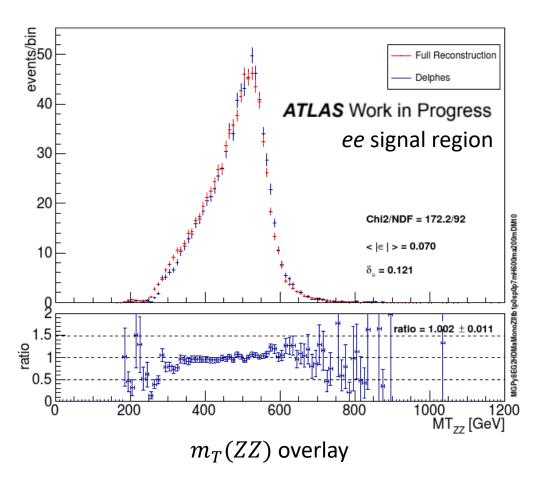
- Affect yields and shape of discriminant variable distributions
- Theoretical ie: QCD scale, PDF, parton showering
- Experimental ie: detector reconstruction uncertainties
- Over 100 systematics considered in full analysis

Signal event generation

Want to reproduce parameter limit scans of DM models using *fast simulation software* of ATLAS detector response and *simplified systematics*

Signal events with a $Z(\ell^+\ell^-) + \chi \overline{\chi}$ final state, with fixed parameters $m_H = m_A = 600 \text{ GeV}, m_a = 200 \text{ GeV}, \tan\beta = 0.1, m_{\chi} = 10 \text{ GeV}$	$\frac{\sin\theta}{0.1}$	σ (fb) 1.0002 ± 0.0006			
 MadGraph Pythia Inard scattering events hadronization and parton showering 	0.2	3.7410 ± 0.0060			
 Delphes - fast simulation of ATLAS detector response 	0.3	7.5824 ± 0.0044			
Delphes default parameter card used with few changes:	0.4	11.881 ± 0.021			
• E_T^{miss} calculation altered to be object-based	0.5	16.062 ± 0.021			
 Other kinematic differences: 	0.6	19.883 ± 0.019			
• Min Jet p_T changed from 20 GeV to 30 GeV	0.7	23.159 ± 0.025			
• Jet size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ changed from 0.6 to 0.4	0.9	28.142 ± 0.024			
\circ where $\Delta \phi$ is the azimuthal separation, and $\Delta \eta$ is the pseudorapidity separation					
Resulting events used as input for analysis step					

- Apply object and event selection
- Compare kinematic distributions with those obtained using full detector simulation


Signal event selection

Selection criteria	Background Reduced
Opposite-sign leptons, leading (subleading) $p_T > 30$ (20) GeV	—
Third lepton veto	WZ
$ \eta_e < 2.47, \eta_\mu < 2.50$	—
$76 < m_{ll} < 106 \text{ GeV}$	Non-resonant
$E_T^{\rm miss} > 90 {\rm ~GeV}$	Z+jets
$\Delta R_{ll} < 1.8$	Z+jets, Non-resonant
$\not\!\!\!E_T/\sqrt{H_T} > c$	Z+jets

E_T^{miss} Significance substitution

- Delphes 3 does not have object-based E_T^{miss} significance defined
 - $E_T^{miss} / \sqrt{H_T}$ used as a substitute
- Cut value *c* obtained for each sample

Delphes distribution agreement with ATLAS

Example signal kinematic distribution using Delphes compared to full reconstruction

Delphes distributions agree well with ATLAS distributions in **shape**

Delphes distributions normalization

- Muon acceptance agrees well with ATLAS
- Electron acceptance does not much lower
- Rescaling using ATLAS normalization required

Muon scaling factor found to be 1.026 Electron scaling factor found to be 1.697

Statistical treatment

Upper limit on signal strength μ can be calculated using *frequentist profile likelihood method* based on CLs statistic:

$$CL_s = \frac{CL_{s+b}}{CL_b} = \frac{p_{s+b}}{1-p_b}$$

where p_{s+b} is the *p*-value for the signal+background hypothesis, and p_b is that for the background-only hypothesis

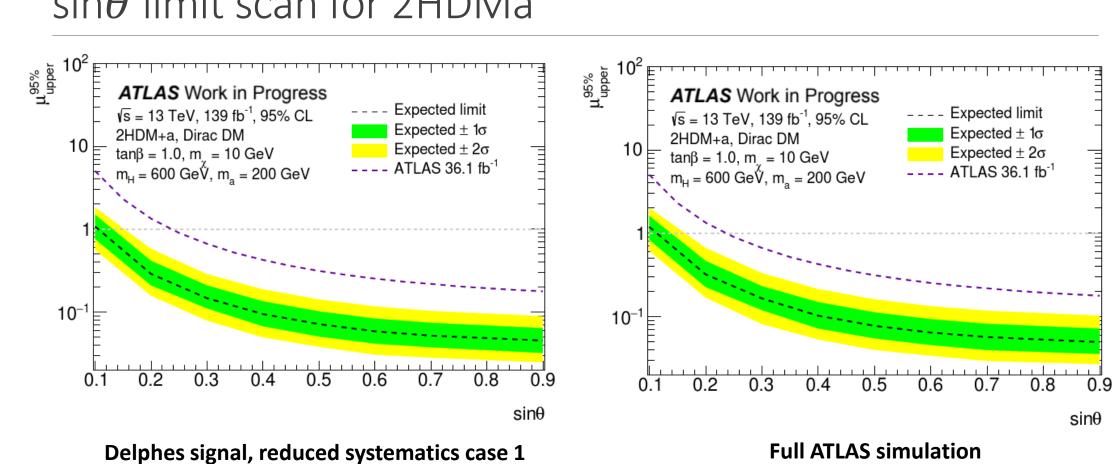
Upper limit μ_{up} is the value of μ that gives CL_s value of $CL_s = 0.05$, which corresponds to **95% CL**

 μ_{up} is calculated for each value of $\sin\theta$

• these upper limits are collectively used to make limit scans to *exclude regions of parameter space*

Want to create *sin* θ *limit scan* for sin θ = 0.1 – 0.9

Systematic uncertainties are included as nuisance parameters in the fit


Want to assess the use of Delphes along with reduced systematics

- Over 100 systematics in full analysis only want to consider the most important
- 10% signal systematic included from uncertainties on acceptance

Consider two cases of reduced systematics

- First case **top 14** systematics along with uncertainty in luminosity
- Second case top 8 systematics along with uncertainty in luminosity

Differences between Delphes and ATLAS distributions are included as uncertainty

$\sin\theta$ limit scan for 2HDMa

2021-06-09

Conclusion

Looking for dark matter at the LHC

- Dark matter particle not found yet
- Set limits on 2HDMa dark matter model parameters

Explore effects of analysis simplifications

- Simplified detector simulation MadGraph + Pythia + Delphes
- Simplified systematic treatment only top systematics considered
- Find very similar result as full analysis

Thank you!

2021-06-09

Backup

2021-06-09

 $E_T^{miss} / \sqrt{H_T}$ cut values

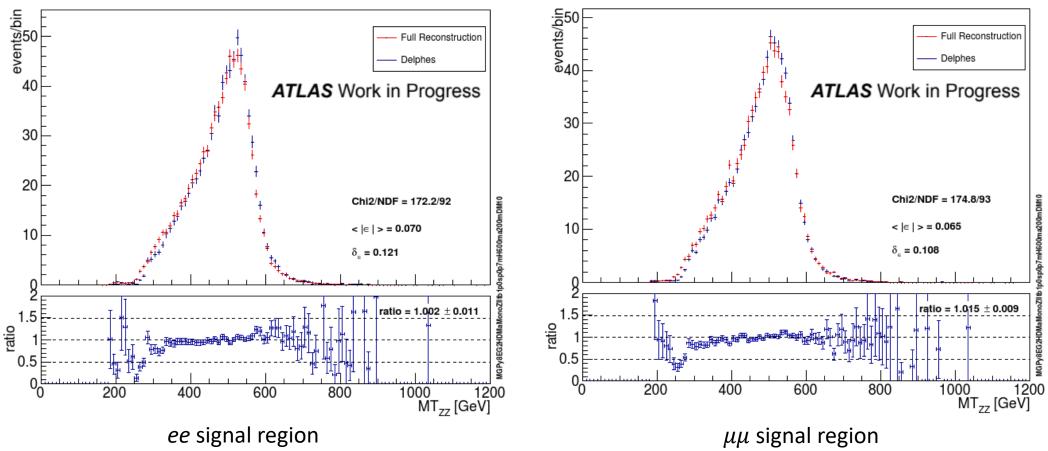
$\sin \theta$	$E_T/\sqrt{H_T}$ Cut	Eff % (D, ee)	Eff % (D, $\mu\mu$)	Eff % (A, ee)	Eff % (A, $\mu\mu$)
0.35^{*}	9.15	0.838 ± 0.009	0.833 ± 0.007	0.835 ± 0.003	0.833 ± 0.003
0.7**	9.10	0.842 ± 0.008	0.826 ± 0.007	0.836 ± 0.002	0.831 ± 0.002
0.1	9.35	0.833 ± 0.009	0.823 ± 0.007	0.839 ± 0.003	0.832 ± 0.003
0.2	9.00	0.831 ± 0.009	0.839 ± 0.007	0.838 ± 0.003	0.832 ± 0.003
0.3	9.02	0.842 ± 0.009	0.830 ± 0.007	0.838 ± 0.003	0.832 ± 0.003
0.4	9.27	0.832 ± 0.009	0.838 ± 0.007	0.838 ± 0.002	0.832 ± 0.002
0.5	9.20	0.839 ± 0.008	0.831 ± 0.007	0.837 ± 0.002	0.831 ± 0.002
0.6	9.20	0.836 ± 0.009	0.833 ± 0.007	0.837 ± 0.002	0.831 ± 0.002
0.9	9.20	0.844 ± 0.009	0.821 ± 0.007	0.835 ± 0.003	0.831 ± 0.003

Acceptances

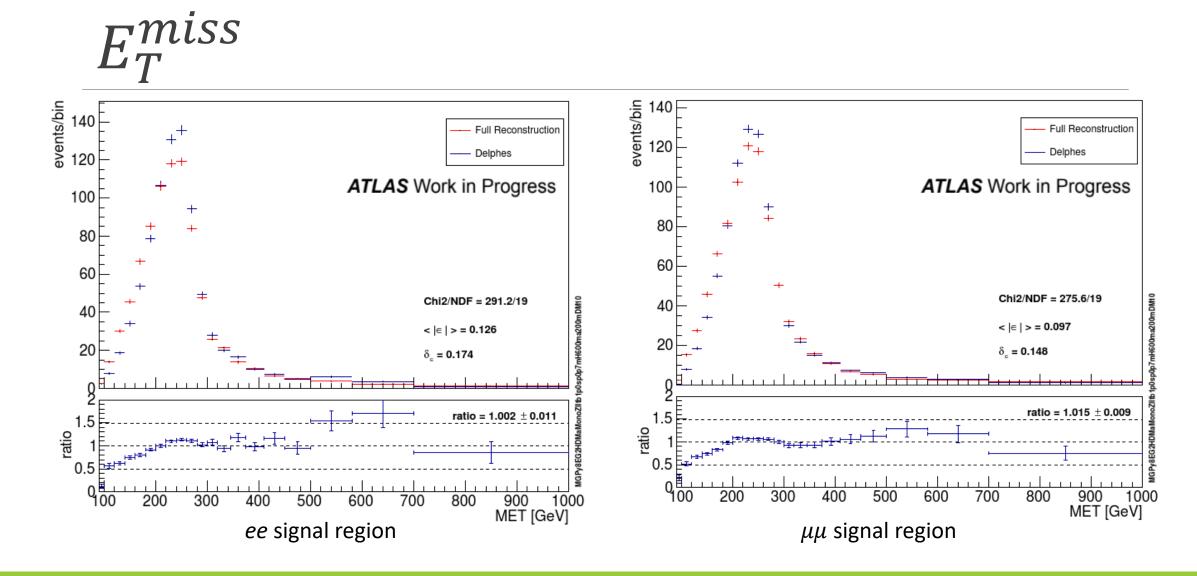
$\sin\theta$	ϵ	a (A, ee)	a (A, $\mu\mu$)	a (D, ee)	a (D, $\mu\mu$)	r_{ee}	$r_{\mu\mu}$
0.35^{*}	0.9900	0.2503 ± 0.0052	0.2532 ± 0.0053	0.1454 ± 0.0023	0.2582 ± 0.0029	1.737 ± 0.045	0.9828 ± 0.0233
0.7**	0.9897	0.2509 ± 0.0072	0.2529 ± 0.0073	0.1496 ± 0.0011	0.2463 ± 0.0014	1.677 ± 0.050	1.027 ± 0.029
0.1	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1503 ± 0.0030	0.2362 ± 0.0036	1.685 ± 0.038	1.077 ± 0.020
0.2	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1503 ± 0.0011	0.2512 ± 0.0014	1.685 ± 0.021	1.012 ± 0.011
0.3	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1528 ± 0.0017	0.2490 ± 0.0021	1.659 ± 0.025	1.022 ± 0.013
0.4	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1493 ± 0.0011	0.2461 ± 0.0014	1.692 ± 0.021	1.031 ± 0.012
0.5	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1477 ± 0.0021	0.2462 ± 0.0014	1.707 ± 0.030	1.030 ± 0.012
0.6	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1468 ± 0.0022	0.2445 ± 0.0014	1.712 ± 0.031	1.035 ± 0.012
0.7	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1496 ± 0.0011	0.2463 ± 0.0014	1.694 ± 0.021	1.033 ± 0.012
0.9	-	0.2534 ± 0.0025	0.2544 ± 0.0025	0.1451 ± 0.0020	0.2492 ± 0.0025	1.725 ± 0.029	1.013 ± 0.014

Validation

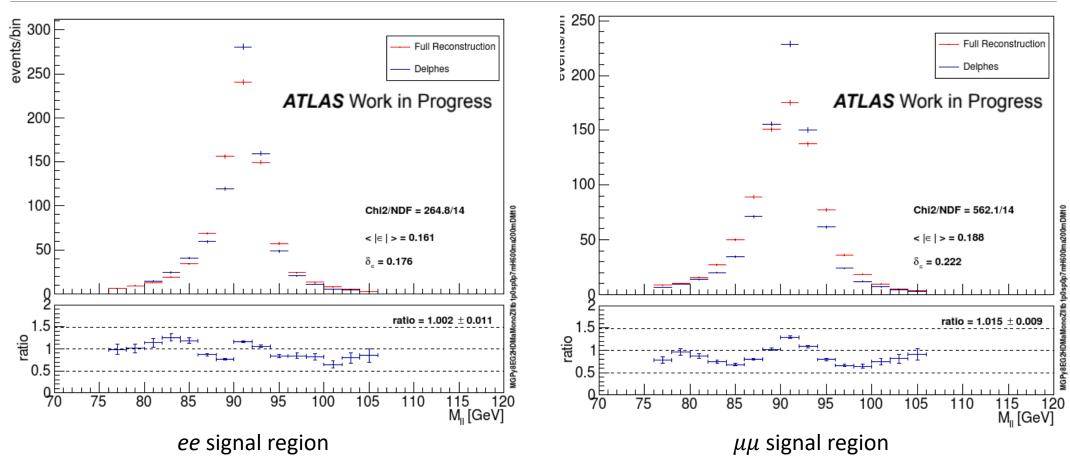
For two independent histograms, one with bin content a_j and error σ_{aj} and the other with bin content b_j and error σ_{bj} for bin j, the average of the relative difference between the two is


$$\begin{split} \langle \epsilon \rangle &= \frac{\sum_{j} \frac{\epsilon_{j}}{\sigma_{\epsilon_{j}}^{2}}}{\sum_{j} \frac{1}{\sigma_{\epsilon_{j}}^{2}}}, \qquad \text{where } \epsilon_{j} = \frac{b_{j} - a_{j}}{s_{j}}, \text{ and} \\ s_{j} &= \frac{\frac{a_{j}}{\sigma_{a_{j}}^{2}} + \frac{b_{j}}{\sigma_{b_{j}}^{2}}}{\frac{1}{\sigma_{a_{j}}^{2}} + \frac{1}{\sigma_{b_{j}}^{2}}} \end{split}$$

is the MLE of the true bin content. The average of the absolute of the relative difference and the square of the rms of the relative difference are then given by


$$\left\langle \left| \epsilon \right| \right\rangle = \frac{\sum_{j} \frac{\left| \epsilon_{j} \right|}{\sigma_{\epsilon_{j}}^{2}}}{\sum_{j} \frac{1}{\sigma_{\epsilon_{j}}^{2}}}$$

$$\delta_{\epsilon}^{2} = \left\langle \epsilon^{2} \right\rangle = \frac{\sum_{j} \frac{\epsilon j^{2}}{\sigma_{\epsilon j}^{2}}}{\sum_{j} \frac{1}{\sigma_{\epsilon j}^{2}}}$$



S. TAYLOR - UVIC - CAP CONGRESS

2021-06-09

Statistical treatment for limit setting

Frequentist profile likelihood test – based around profile likelihood ratio

• Consider expected number of events given by $v_j = \mu s_j + b_j$, then the likelihood is given by

$$L(\mu, \boldsymbol{\theta}) = \prod_{j}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \times \prod_{k}^{M} G(\theta_{j,k})$$

• The profile likelihood ratio is then given by

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}$$

Discovery statistics

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases} \qquad p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) dq_0 \qquad Z = \Phi^{-1}(1-p) \end{cases}$$

Statistical treatment for limit setting

Statistics for limit setting

• If no excess signal is found, can set upper limit on signal strength using CLs method

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\frac{L(\mu,\hat{\theta}(\mu))}{L(0,\hat{\theta}(0))} & \hat{\mu} < 0\\ -2\ln\frac{L(\mu,\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta})} & 0 \le \hat{\mu} \le \mu\\ 0 & \hat{\mu} > \mu \end{cases} \qquad p_{\mu} = \int_{\tilde{q}_{\mu,\text{obs}}}^{\infty} f(\tilde{q}_{\mu}|\mu) d\tilde{q}_{\mu}$$

$$CL_s = \frac{CL_{s+b}}{CL_b} = \frac{p_{s+b}}{1-p_b} \qquad \text{where} \qquad p_{s+b} = \int_{\tilde{q}_{\mu,\text{obs}}}^{\infty} f(\tilde{q}_{\mu}|\mu = 1) d\tilde{q}_{\mu} \qquad p_b = \int_{\tilde{q}_{\mu,\text{obs}}}^{\infty} f(\tilde{q}_{\mu}|\mu = 0) d\tilde{q}_{\mu}$$

Reduced systematics

		Background	Systematic	
1	2			
x	х	SignalTh	10%	I 89 E 3
x	x	DelphesTh	Asymmetric	ଞ୍ଜ୍ର 🗧 ATLAS Work in Progress
x	x	qqZZ	qqZZEWcorr	$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}, 95\% \text{ CL}$ Expected limit
x		qqZZ	qqZZQCDscale	2HDM+a Dirac DM Expected $\pm 1\sigma$
x		qqZZ	qqZZPSCKKW	10 = 1000000000000000000000000000000000000
x		qqZZ	lumi	$m_{\rm H} = 600 \text{ GeV}$, $m_{\rm a} = 200 \text{ GeV}$ ATLAS 36.1 fb ⁻¹
x	х	ggZZ	ggZZQCDscale	$H_{\rm H} = 600 {\rm GeV}, {\rm H}_{\rm a} = 200 {\rm GeV}$
x		ggZZ	lumi	
x	x	Electroweak ZZ	EWKZZPDF	
x		Electroweak ZZ	lumi	
x	x	WZ	var_th_QCD	
x		WZ	$var_th_MUR1_MUF1_PDF$	
x		WZ	lumi	-
x	x	Z+jets	photonZjetsExpSys	
x		Z+jets	photonZjetsMisModellingSys	
x		Z+jets	photonZjetsStatSys	
x		Z+jets	photonZjetsTheorySys	
x		Z+jets	lumi	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x	х	Non-resonant	ttbarQCD	
x		Non-resonant	lumi	sinθ
х	х	ttV	QCD	
x		ttV	lumi	Delphes signal, reduced systematics case 2
х	х	VVV	QCD	Delphes signal, reduced systematics case z
x		VVV	lumi	