The Search for Charged Lepton Flavour Violation at Belle II 2021 CAP Virtual Congress

Trevor Shillington

Supervisor: Steven Robertson Department of Physics McGill University

June 9, 2021

Outline

Introduction - The Collider and the Detector

- SuperKEKB
- Belle II

Searching for the Decay Mode $B o K au \ell$ $(\ell = e, \mu)$

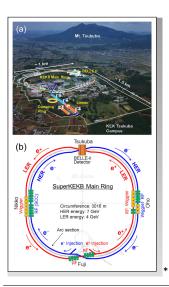
- What is Charged Lepton Flavour Violation?
- Motivation and New Predictions
- Previous Searches
- Our Strategy
- Current Status

Summary and Outlook

Introduction - The Collider and the Detector SuperKEKB

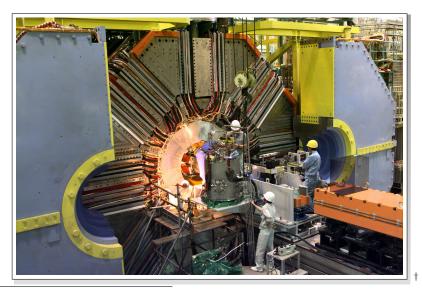
Belle II

2) Searching for the Decay Mode $B o K au \ell \, (\ell = e, \mu)$


3 Summary and Outlook

Introduction - The Collider and the Detector

- Belle II is located in Tsukuba, Japan at the SuperKEKB accelerator
- Belle (1999-2010) was originally commissioned to look for CP violation via Υ(4S) → B⁰B⁰
 - First found in 2001, Kobayashi and Maskawa awarded Nobel Prize in 2008
- Intensity Frontier (complementary to energy frontier)
 - Belle II recently set the world record for instantaneous luminosity at 3 × 10³⁴/cm²/s


SuperKEKB: The Collider

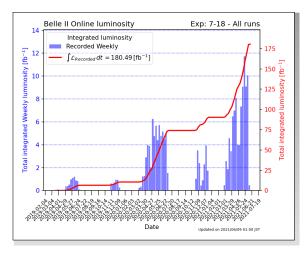
- Asymmetric e^+e^- collider
- 3 km circumference
- Started operations in 2018
- 40x higher luminosity than KEKB
 - 2x beam currents
 - 20x smaller beam spot
- Operates at 10.58 GeV
 - Mass resonance of the
 [↑](4S) meson
 - $\Upsilon(4S)$ decays 96% of the time to $B\overline{B}$ pairs

*. Source : J. Vac. Sci. Technol. A 37, 021602 (2019); https://doi.org/10.1116/1.5083928

Belle II: The Detector

[†]. Source : https ://physicsworld.com/wp-content/uploads/2018/04/BELLE-II.jpg

Belle II


Belle II: The Detector

50x more data than Belle KL and muon detector Resistive Plate Counter (barrel outer lavers) Scintillator + WLSF + MPPC Belle II is a Super B factory (end-caps, inner 2 barrel lavers) EM Calorimeter 40 billion B meson pairs CsI(TI), waveform sampling electronics (vs 800 million at Belle) Particle Identification electrons (7 GeV) ...but also a charm/tau Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) factory Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD 65 billion ccbar pairs 45 billion tau pairs positrons (4 GeV) Central Drift Chamber Smaller cell size, long lever arm Full dataset by 2030 \blacktriangleright 50 ab⁻¹ total Currently at 180 fb⁻¹ ▶ vs 711 fb⁻¹ @Belle vs 429 fb⁻¹ @BaBar

^{1.} source : Matvienko, Dmitry. (2018). The Belle II experiment : status and physics program. EPJ Web of Conferences. 191. 02010. 10.1051/epiconf/201819102010.

Belle II: The Detector

- 50x more data than Belle
- Belle II is a Super B factory
 - 40 billion B meson pairs (vs 800 million at Belle)
- ...but also a charm/tau factory
 - 65 billion ccbar pairs
 - 45 billion tau pairs
- Full dataset by 2030
 - ▶ 50 ab⁻¹ total
 - Currently at 180 fb⁻¹
 - ▶ vs 711 fb⁻¹ @Belle
 - ▶ vs 429 fb⁻¹ @BaBar

Introduction - The Collider and the Detector

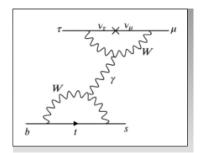
- 2 Searching for the Decay Mode $B o K au \ell \, (\ell = e, \mu)$
 - What is Charged Lepton Flavour Violation?
 - Motivation and New Predictions
 - Previous Searches
 - Our Strategy
 - Current Status

What is Charged Lepton Flavour Violation (CLFV)?

- 3 generations (flavours) of leptons
- Each flavour gets a number associated with it
 - ▶ +1 for particles
 - -1 for anti-particles
- These 3 numbers are conserved in the Standard Model
 - Stems from the assumption that neutrinos have no mass

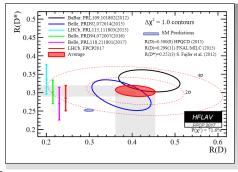
	LHS: L	→ $K^+ \tau^+ e^-$ = 0, L _µ = 0, L = 1, L _µ = 0, L	= 0
Q/e	$L_{e} = -1$	$L_{\mu} = -1$	$L_{\tau} = -1$
0 +1	$\begin{pmatrix} \overline{\nu}_e \\ e^+ \end{pmatrix}$	$\begin{pmatrix} \overline{\nu}_{\mu} \\ \mu^+ \end{pmatrix}$	$\begin{pmatrix} \overline{v}_{\tau} \\ \tau^+ \end{pmatrix}$
Q/e	$L_e = 1$	$L_{\mu} = 1$	$L_{\tau} = 1$
0 -1	$\begin{pmatrix} v_e \\ e^- \end{pmatrix}$	$\begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}$	$\begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}$

What is Charged Lepton Flavour Violation (CLFV)?


 But neutrinos DO have mass, and LFV is known to exist via neutrino oscillation

• e.g. $\nu_e \rightarrow \nu_\mu$

 Even with neutrino oscillations, the Standard Model predicts LFV in the charged sector at a level that is far below experimental observation


Suppressed by a factor of
$$\frac{m_{\nu}^2}{m_{W}^2}$$

• So why are we so motivated?

Example of a SM allowed loop level $B \rightarrow K \tau \mu$ Feynman diagram

Motivation: Lepton Flavour (non)-Universality

§Recent hints of Lepton Flavour non-universality via $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)} \tau \overline{\nu})}{\Gamma(B \to D^{(*)} \ell \overline{\nu})}$

• Lepton Flavour Universality (LFU)

- All three flavours have the same coupling to the electroweak gauge bosons Z and W[±]
- Branching fractions involving leptons do not depend on flavour
- Recent results such as the B-anomalies (R(D^(*)), R(K)) show tension with the SM and hint at lepton flavour non-universality
- There is no known way to include lepton flavour non-universality without inducing CLFV [¶]

source : Li, Y. Lü, C.-D. Recent anomalies in B physics. Sci. Bull. 63, 267–269 (2018)

. Glashow et al., 2014

Motivation: New Physics

Model	Decay Mode	Branching Fraction Limits
Singlet Vector Leptoquark U_1 (Angelescu et al., 2018)	$B \to K \tau \mu$	\gtrsim few x 10 ⁻
Iriplet Vector Leptoquark Bečirević et al., 2016)	$B \to K \tau \mu$	$\lesssim 3 \ge 10^{-1}$
Triplet Vector Leptoquark with $R_{\nu\nu} < 1.2$ (Bečirević et al., 2016)	$B \to K \tau \mu$	$\gtrsim 5~{ m x}~10^-$
Two Scalar Leptoquark (Bečirević et al., 2018)	$B \to K \tau^\pm \mu^\mp$	$\gtrsim 1.1 \ \mathrm{x} \ 10^{-7} \ \mathrm{and} \lesssim 6.5 \ \mathrm{x} \ 10^{-7}$
Three-site Pati-Salam Gauge Model (PS ³) (Bordone et al., 2018)	$B^\pm \to K^\pm \tau^\pm \mu^\mp$	> 10
Three-site Pati-Salam Gauge Model (PS ³) (Bordone et al., 2018)	$B^\pm \to K^\pm \tau^\mp \mu^\pm$	≈ 1
Pati-Salam with Minimal Matter Content (Heeck & Teresi, 2018)	$B \to K \tau \mu$	$\gtrsim 10^{-1}$
Gauged Horizontal $SU(2)$ Symmetry (Guadagnoli et al., 2018)	$B \to K \tau \mu$	$\gtrsim 1.3 \ \mathrm{x} \ 10^{-8}$ and $\lesssim 5.2 \ \mathrm{x} \ 10^{-7}$
Belle II Limit at 50 ab^{-1}	$B \rightarrow K \tau \ell$	$2 \text{ to } 3 \ge 10^{-1}$

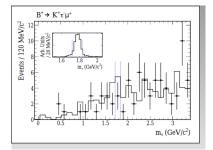
- Various predictions on the branching fraction of $B \rightarrow K \tau \mu$. Note that some of these are highly dependent on other observables.
- Some models predict $BR(B \rightarrow K\tau\ell)$ to be as high as 10^{-6} , within reach of Belle II

Trevor Shillington (McGill University)

The Search for CLFV at Belle II

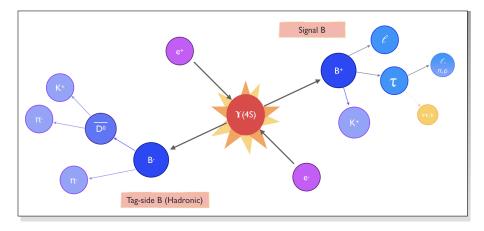

$B \rightarrow K \tau \ell (\ell = e, \mu)$: Previous Searches

● BaBar 2012


- Found no evidence for $B \to K \tau \ell$ with 429 fb⁻¹ of data
- Set a 90% CL upper limit on each branching fraction at the level of a few × 10⁻⁵

LHCb 2020 **

- Found no evidence for $B^+ \to K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays
- Set a 90% CL upper limit on the branching fraction at < 3.9 x 10⁻⁵
- Belle II will be able to get down to at least \$\mathcal{O}(10^{-6})\$


**. LHCb collaboration. Search for the lepton flavour violating decay $B^+ \rightarrow K^+ \mu^- \tau^+$ using B_{c2}^{*0} decays. JHEP 06 (2020) 129

Some results from BaBar (2012)

Searching for the Decay Mode $B \rightarrow K \tau \ell (\ell = e, \mu)$ Our Strategy

$B \rightarrow K \tau \ell \ (\ell = e, \mu)$: Our Strategy

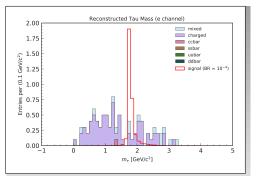
Trevor Shillington (McGill University)

Searching for the Decay Mode $B \rightarrow K \tau \ell (\ell = e, \mu)$ Our Strategy

$B ightarrow K au \ell \ (\ell = e, \mu)$: Our Strategy

- Use the Full Event Interpretation (FEI)^{††} algorithm to reconstruct the "tag-side" B-meson, B_{tag}
 - Utilises a neural network to train on *O*(10⁸) MC events
 - Uses thousands of decay channels to reconstruct B_{tag}

$$\vec{p}_{B_{tag}} = -\vec{p}_{B_{sig}}$$


Combine this with the kaon and primary lepton to reconstruct the tau

$$m_{\tau} = \sqrt{E_{\tau}^2 - |\vec{p}_{\tau}|^2},$$

$$E_{\tau} = E_{beam} - E_{K} - E_{\ell},$$

$$\vec{p}_{\tau} = -\vec{p}_{tag} - \vec{p}_{K} - \vec{p}_{\ell}$$

The tau mass is our signal variable, which peaks sharply for signal and is relatively flat for background

Reconstructed tau mass for $B^+ \rightarrow K^+ \tau^+ e^-$ in the $\tau \rightarrow e\nu\nu$ channel using 2 ab^{-1} of generic MC and 50 million signal MC events^{‡‡}, both scaled to 200 fb⁻¹

 \ddagger . assuming a BR = 10^{-4}

Keck, T., Abudinén, F., Bernlochner, F.U. et al. The Full Event Interpretation. Comput Softw Big Sci 3, 6 (2019).

$B \to K \tau \ell \ (\ell = e, \mu)$: Current Status

- Currently focused on the mode $B^+ \rightarrow K^+ \tau^+ e^-$
- Working with MC samples to optimize search and reduce backgrounds such as:
 - photon conversion events
 - charmonium background
 - semi-leptonic D decays
- Possibility of running on a small dataset this summer (180-200 fb $^{-1}$)

^{§§.} Cover art for David Bowie's single "Where Are We Now?". Copyright Columbia or the graphic artist.

Introduction - The Collider and the Detector

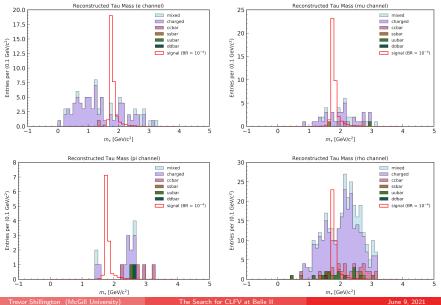
2) Searching for the Decay Mode $B o K au \ell \, (\ell = e, \mu)$

Summary and Outlook

$B \rightarrow K \tau \ell \ (\ell = e, \mu)$: Summary and Outlook

- Belle II is a state-of-the-art Super B factory with a rich physics program
- The large **50** ab^{-1} **dataset** allows us to probe for New Physics beyond the Standard Model
- $B \rightarrow K \tau \ell \ (\ell = e, \mu)$ is a prime place to look for New Physics
- If found, it is direct evidence of physics beyond the Standard Model
- If not, it can help place strict limits on new models
- Exciting decade for flavour physics Stay tuned !!

Thank you :)


Back-up Slides

Back-up Slides

Trevor Shillington (McGill University)

The Search for CLFV at Belle II

$B^+ \rightarrow K^+ \tau^+ e^-$ Tau Mass Plots for 2 ab⁻¹ of MC

June 9, 2<u>021</u>