Looking Forward to Millicharged Dark Sectors at the LHC

Based on arXiv:2010.07941 [SF, F. Kling \& Y. Tsai]

Saeid Foroughi-Abari

University of Victoria

OUTLINE

- Motivation for milliCharged Particles (mCPs)
- Dedicated experiments: milliQan to search for MCP
- Other experimental probes: Proton FixedTargets / Neutrino Experiments
- FORMOSA: Probing mCPs at the LHC forward physics region
- Millicharged Strongly Interacting Dark Matter

New physics in a dark sector

- Empirical evidence for new physics, e.g. neutrino mass, dark matter, points to a Dark Sector
- Particles from a dark sector weakly interacting with ordinary matter through a dark mediator are viable dark matter candidates

Standard Model mediators
 Dark Sector

- Examples of proposed experiments @LHC

Searches for millicharged particles

Searches for long lived particles

Fractionally Charged Particles

- Fractionally (or irrationally) charged under SM U(1) hypercharge

$$
\mathcal{L}_{\mathrm{MCP}}=\bar{\chi}\left(i \not \partial-\epsilon^{\prime} e \not B-m_{\chi}\right) \chi
$$

- Can just consider this Lagrangian terms by themselves (no extra mediator, i.e., dark photon)
- Vector Portal Kinetic Mixing: [Holdom, '85]
- Millicharged particle (mCP) can be a low-energy consequence of massless dark photon (a new $U(1)^{\prime}$ gauge boson) coupled to a new fermion (become MCP)

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{\mathrm{SM}}-\frac{1}{4} B_{\mu \nu}^{\prime} B^{\prime \mu \nu}-\frac{\kappa}{2} B_{\mu \nu}^{\prime} B^{\mu \nu} \\
& +\bar{\chi}\left(i \not \partial-e^{\prime} B^{\prime}-m_{\chi}\right) \chi
\end{aligned}
$$

Searches for millicharged particles

Strong constraints below m_{e} :

- Astrophysics - Cooling \& energy loss bounds from stars, SN, etc.
- Cosmology: Bounds from BBN and CMB on $N_{\text {eff }}$
- Accelerators: direct constraints from SLAC mQ, LEP, etc.
- The SM 100 GeV
at 0.1 GeV to

Dedicated mCP detector: milliQan @LHC

- Heavier mCP, 0.1 to 100 GeV can be probed at the LHC
- A three-layer scintillator detector at 33 m from CMS IP, at Transverse Region
- Triple Coincidence in small time window $\sim 15 \mathrm{~ns}$

Sensitivity to MCPs at Transverse Region

Expected Sensitivity

Dominant background: Cosmic muons \& dark current

Proto-milliQan first update!

Demonstrator $\sim 1 \%$ (total of 18 bars) taking data since mid-2017

More MilliCharged Particles Hunting

- MCP scattering with electron enjoys low-momentum transfer
- Sensitivity greatly enhanced by accurately measuring low energy

Detection: Electron Scattering

Similar topology: deNiverville, Pospelov, Ritz, '11, Batell, Pospelov, Ritz, et al. '14

$$
\sigma_{e \chi} \propto \frac{\epsilon^{2}}{E_{e}^{\min }-m_{e}}
$$

High-Intensity Energy Frontier

- LHC Higgs factory: new physics searches focus on the Central Region (high-pT)
- Instead locate a detector at a few 100 m away along the "collision axis"
- High flux of light weakly interacting particles at the very Forward Region (along the п, K, D, B decays) - A very energetic beam-dump experiment!
- Motivates a small and inexpensive detector: FORMOSA: FORward MicrOcharge SeArch

mCP Production Channels

- Light meson decays
- Importance of heavy vector meson at high mass

- Drell-Yan

- Enhanced mCP production cross-section compared to the transverse direction

MCP Detection Signature

- Deposition of energy due to ionization
- Average number of photoelectrons (PE):

$$
\bar{N}_{\mathrm{PE}} \propto L_{s} \times\left\langle-\frac{d E}{d x}\right\rangle \sim \epsilon^{2} \times 10^{6}
$$

1 m plastic scintillator bar

- The probability of observing multiple-coincidence of at least one PE in each stack of the scintillator (for reducing the detector background)

$$
\begin{gathered}
P_{\text {det. }}=\left(1-e^{-\bar{N}_{\mathrm{PE}}}\right)^{n} \Rightarrow \begin{array}{c}
\text { Number of signal } \\
\text { events }
\end{array}
\end{gathered} \quad N_{\chi} \cdot P_{\text {det }}
$$

New Challenge in the Forward Region

Beam related background:

HE muons: new challenge arises due to large flux of muons (and secondary particles) from the beam collisions

- FLUKA simulation: estimated muon flux ~ one muon every $100 \mu s$
\% Feasible task: implementing an online-veto of large-PE events

But this is not the full story

\square Afterpulses: small pulses occurring with a delay time of $\delta t \lesssim 10 \mu s$ after the initial pulse

Remove the afterpulse background by vetoing $\sim 10 \%$ of the data

- Better PMTs with reduced afterpulse duration => improve the live-time efficiencies

FORMOSA: Sensitivity

- Two scenarios including placing the detector 2 m offaxis.
- Better sensitivity reach in comparison to the full milliQan run.
- More background studies, ideally including in-situ measurements are needed. However, the background can be brought under control.

Advantage of enhanced mCP production in the forward direction

Strongly Interacting Dark Matter

- MCPs can account for a fraction of the dark matter (DM) abundance
- If DM-SM interaction is too strong: attenuation of the expected local dark matter flux at the underground Direct Detection Experiments
- Loss of sensitivity to DM above some critical cross section.

FORMOSA can help cover a large part of the millicharged DM region that is previously unconstrained.

- Many complementary new experiments at LHC are proposed to search for physics BSM. These experiments are quick, small and inexpensive.
- mCP probes at terrestrial experiments such as colliders, fixedtarget experiments as well as astrophysical or cosmological observations have been vastly studied and searched for.
- FORMOSA, a milliQan-like experiment downstream of ATLAS, would take advantage of enhanced mCP production in the forward direction.
- FORMOSA could provide leading sensitivity to MCPs in the 100 MeV to 100 GeV mass window.
- Beam-related backgrounds (from forward muons) become important in the forward direction.
- FORMOSA can help cover a large part of the millicharged DM region that is previously unconstrained.

Thanks for your attention!

Question?

FerMINI @ DUNE

MCP Produced in Fixed-Target Experiments

A Fermilab Search for MINI-charged Particle based on scintillating detectors

Directly inspired by milliQan concept [Hass, Yavin, et al. '14]

LBNF: Long-Baseline Neutrino Facility
Jonathan Asaadi, Texas A\&M University

FORMOSA: Beam unrelated background

- Cosmic muon \& dark current pulses in the PMTs in coincidence \Rightarrow similar signature to MCPs
* Quadruple coincidence can reduce these BG to a negligible level. [milliQan Collaboration '20]

Complementary Proposed Experiments @LHC

