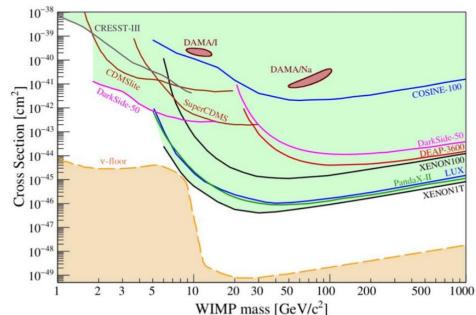

Muon-induced backgrounds in a new dark matter experiment - the Scintillating Bubble Chamber

By Patrick Hatch

Direct dark matter searches

-Direct DM searches look for signals of DM scattering off a standard model particle (typically a nucleus)


-These detectors look for energy deposits from ionization, scintillation, heat, or a combination to reject backgrounds

WIMPs - the search so far

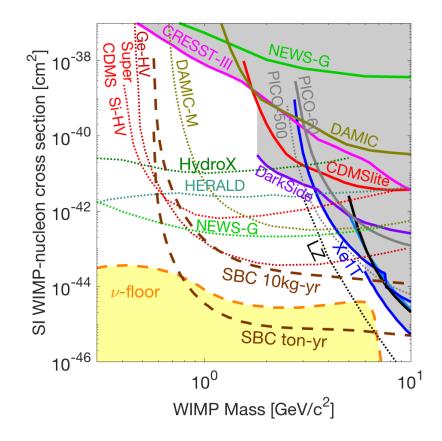
-The high mass spin-independent WIMP regime has been well explored

-New theories (e.g. asymmetric DM) suggest candidates with lower masses

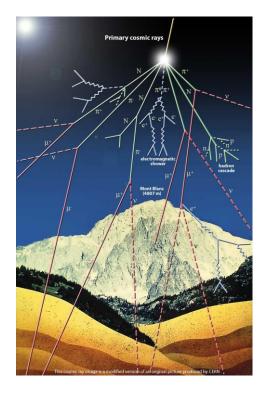
-Searching for lower masses requires low energy threshold and low backgrounds

Schumann, M. (2019)

Enter the Scintillating Bubble Chamber (SBC)

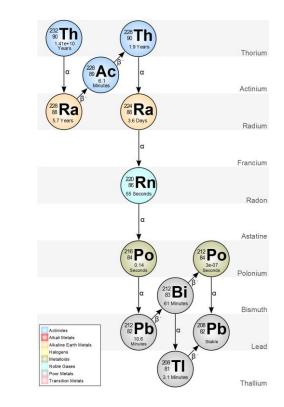

-The SBC is a bubble chamber made of superheated liquid argon to be located at SNOLAB

-Energy from nuclear recoils are deposited as heat (producing bubbles) which we detect with cameras and acoustic sensors


-Energy from electronic recoils are deposited as scintillation which we detect with SiPMs

-Energy threshold goal of 100 eV!

Neutron backgrounds



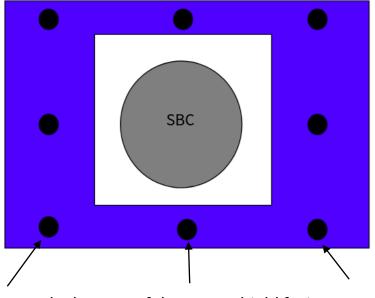
KTH space center

-Neutrons can scatter off a nuclei and thus present a major background for DM searches

-Radiogenic neutrons come from radioactive processes such as spontaneous fission and (α,n) reactions

-Cosmogenic neutrons come from atmospheric muons spallating neutrons directly or indirectly

Courtesy of Wikipedia

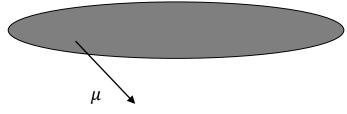

The muon veto

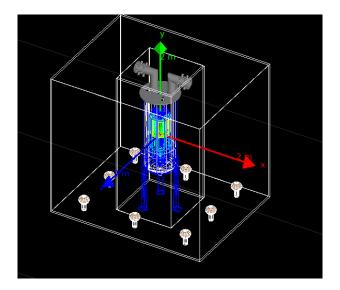
-One way to cut (most) cosmogenic neutrons is with a muon veto (and go underground)

-SBC's muon veto is 8 PMTs placed within a water shield made of HDPE

-As a muon passes through the veto it produces Cerenkov light detected by the PMTs

Top down view of SBC + water shield




PMTs on the bottom of the water shield facing upward

Designing an efficient muon veto

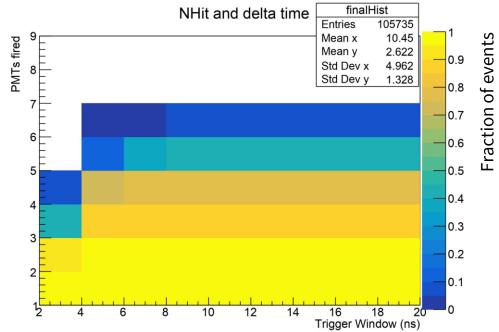
-To test the best water shield design we first build a model of the water shield in Geant4

-Then we shoot muons at the model and find out what percentage of muons were detected by the PMTs

Dark coincidences

-PMTs have "dark noise" in which they activate without a detection of photons (hence "dark")

-If many PMTs experience dark noise simultaneously it could look like a muon signal -At least 5 PMTs fired is desirable

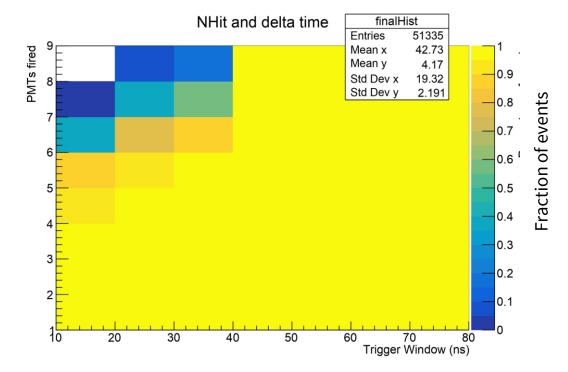

for muon detection

Rate of dark coincidences (coincidences per year) 1011 106 10¹ 10^{-4} 10^{-9} 10-14 PMTs fired = 1 10-19 10-24 10 20 30 40 50 60 70 80 0 Trigger window (ns)

Rate of dark coincidences vs trigger window for 8 PMTs

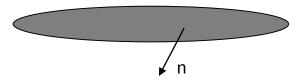
Dashed horizontal line indicates one coincidence per year

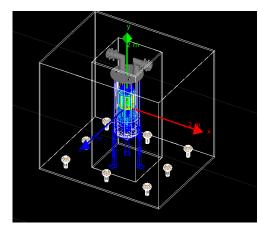
Simulation results (HDPE alone)

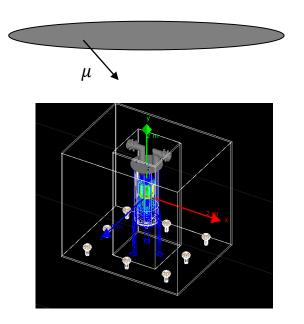

-Not very effective at detecting muons above the dark noise limit!

Simulation results (Reflective paint)

-Using flat-white paint


-Set reflectivity to 75%


-Much more effective at detecting muons above the dark noise limit!


How many neutrons do we expect?

Cosmogenic neutrons from rock: make neutron gun from published spectra

Cosmogenic neutrons produced in SBC and water shield: use muon gun to spallate neutrons

Results with water shield and without

	CN from rock: 0-1 MeV	1-10 MeV	$>10 \mathrm{MeV}$	CN from everything else	Total
No WS	0.095 ± 0.032	0.013 ± 0.013	0.123 ± 0.035	< 0.01	$^{*}_{0.231 \pm 0.049}$
WS	0.008 ± 0.01	0.002 ± 0.004	0.068 ± 0.020	0.01 ± 0.03	0.088 ± 0.038

* Number comes adding CN from rock

This table is for single nuclear recoil events per year (CN = cosmogenic neutron

WS = water shield)

-Cosmogenic neutrons from water shield doesn't produce many events

-Not very many cosmogenic neutrons events in total, especially with water shield

Results with water shield and without

	CN from rock: 0-1 MeV	1-10 MeV	$>10 \mathrm{MeV}$	CN from everything else	Total
No WS	0.095 ± 0.032	0.013 ± 0.013	0.123 ± 0.035	< 0.01	0.231 ± 0.049
WS	0.008 ± 0.01	0.002 ± 0.004	0.068 ± 0.020	0.01 ±0.03	0.088 ± 0.038

* Number comes adding CN from rock

This table is for single nuclear recoil events per year (CN = cosmogenic neutron

WS = water shield)

-Cosmogenic neutrons from water shield doesn't produce many events

-Not very many cosmogenic neutrons events in total, especially with water shield

Results with water shield and without

	CN from rock: 0-1 MeV	1-10 MeV	$>10 \mathrm{MeV}$	CN from everything else	Total
No WS	0.095 ± 0.032	0.013 ± 0.013	0.123 ± 0.035	< 0.01	0.231 ± 0.049
WS	0.008 ± 0.01	0.002 ± 0.004	0.068 ± 0.020	0.01 ±0.03	0.088 ± 0.038

* Number comes adding CN from rock

This table is for single nuclear recoil events per year (CN = cosmogenic neutron

WS = water shield)

-Cosmogenic neutrons from water shield doesn't produce many events

-Not very many cosmogenic neutrons events in total, especially with water shield

Main takeaways

-Adding a reflective property to SBC's muon veto will allow it to be efficient, but based on the number of events we expect to see, a muon veto may not be necessary

-A water shield doesn't add many cosmogenic neutrons as feared

-Will later consider cosmogenic neutron backgrounds and a muon veto for a bigger SBC

-SBC is an exciting new dark matter experiment that will carve out new parameter space in the low-mass spin-independent WIMP regime (or actually detect DM ())

-Muons are evil 😇

Thank you!

