
Study of neutrons associated with neutrino interactions in water with the IWCD detector

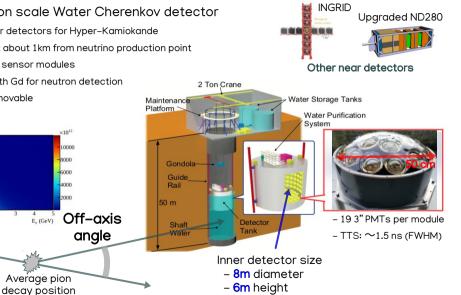
Ryosuke Akutsu (TRIUMF) for the Hyper-Kamiokande collaboration

June 10, 2021/2021 CAP Virtual Congress

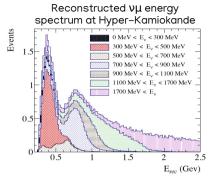
- Long-baseline neutrino oscillation program, following the successful T2K experiment
 - $2.5\times$ more intense beam and $8\times$ larger fiducial mass than Super-Kamiokande's one
- + 20× of T2K's event rates \rightarrow more important to predict event rates accurately

IWCD

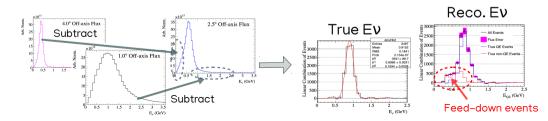
Bon (Degree


Proton beam

Beam

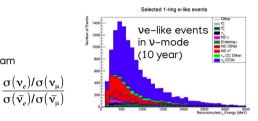

target

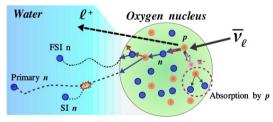
Sub-kiloton scale Water Cherenkov detector


- One of near detectors for Hyper-Kamiokande
- Located at about 1km from neutrino production point
- New photo sensor modules
- Loading with Gd for neutron detection
- Vertically movable

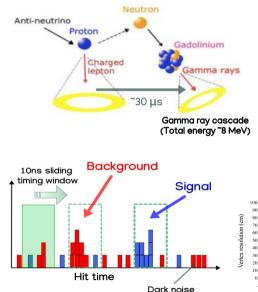
IWCD's measurement programs (1/2)

- Measurement of true-reco. ν energy mapping for ν mixing angle $\theta_{_{23}}$ measurement
 - Charged–Current Quasi Elastic (CCQE) reaction is assumed for ν energy reconstruction
 - Non-CCQE interactions tend to be reconstructed as low-energy events (feed-down events)
 - Taking data at different off-axis angles enables studying relation between true and reco. energies

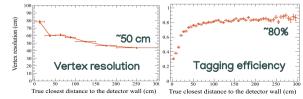



IWCD's measurement programs (2/2)

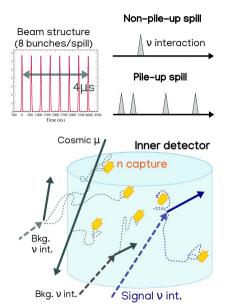
- Measurement of ve(ve) cross section for leptonic CP violation search
 - Need to predict $ve(\overline{v}e)$ event rate accurately
 - $\nu e(\overline{\nu}e)$ exist as 1% contamination in $\nu \mu(\overline{\nu}\mu)$ beam
 - Will measure the double-cross section ratio


Measurement of neutron multiplicities

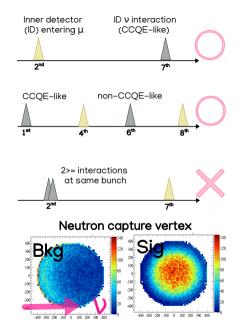
- Many analyses at Hyper-Kamiokande will utilize information about tagged neutrons
 - Nucleon decay searches
 - Supernova relic neutrino searches
 - Neutrino oscillation measurements
- Large uncertainties on neutron multiplicities due to complicated production processes
- Need to constrain the multiplicities by data



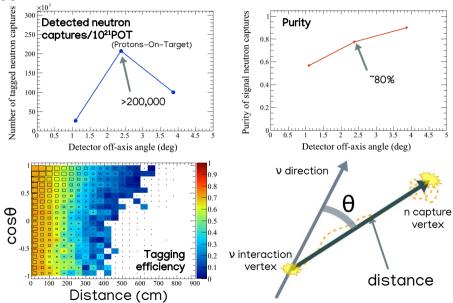
Simple neutron reconstruction


- Searching for neutron signals up to +100 μs after signal ν interactions
- Identifying clustered PMT signals in time as neutron candidates
- Reconstructing neutron capture vertex
 - Finding the position that minimizes TOF subtracted timing of PMT signals
 - TOF: time-of-flight of photon creating PMT signal

Neutron measurement with event pile-up effect


- There will be event pile-up
 - Multiple neutrino interactions per spill

- Neutrons from background neutrino interactions could be serious issue
- Studied feasibility of neutron measurement with event pile-up
 - Statistics
 - Efficiency
 - Purity



Simulation & Analysis

- Simulations
 - Simulating single events
 - NEUT for ν interactions
 - CRY for cosmic shower particles
 - Geant4 for propagating particles from NEUT & CRY through IWCD's geometry
 - Making pile-up spills
 - Combining single events with one spill, considering event rates and event timing
- Analyses
 - Selecting "clean" spills (top right drawings)
 - Signal ν interactions: CCQE-like
 - Apply vertex cuts to neutron capture candidates

Results

Summary

- The Intermediate Water Cherenkov Detector (IWCD) is planned as one of the near detectors for the Hyper-Kamiokande's long-baseline neutrino oscillation program
- The IWCD's measurements of neutrino interaction rates are important to control systematic uncertainties for the program
- The IWCD detector is also planed to be operated with Gd sulfate loading, in order to enhance ability of neutron detection
- Feasibility of neutron multiplicity measurements with event pile-up was evaluated
- With simple neutron reconstruction, IWCD will be able to collect high statistics of detected neutron candidates with high purity and high detection efficiency