Migdal effect as an inelastic channel in dark matter direct detection

Chih-Pan Wu
Université de Montréal

Reference: Phys. Rev. D 102, 121303(R) / arXiv:2007.10965

Dark Matter Direct Detection

Photo from XENON Collaboration website.

Discrimination of
Nuclear Recoil (NR) \& Electronic Recoil (ER)

Restrictions on Light Dark Matter Search

Standard Halo Model

Nucleus (Atom) Mass $\sim \boldsymbol{A}^{*} \boldsymbol{m}_{\boldsymbol{p}} \sim 100 \mathrm{GeV}$
Efficiency of energy transfer: $r=\frac{4 m_{i n c} m_{t a r}}{\left(m_{i n c}+m_{t a r}\right)^{2}}$

$$
\begin{aligned}
& \left\langle n^{\prime} l^{\prime} m^{\prime}\right| 1|n l m\rangle=\delta_{n n^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
& \left\langle n^{\prime} l^{\prime} m^{\prime}\right| 0|n l m\rangle=0
\end{aligned}
$$

Migdal Effects

$$
\left|\Phi_{e c}^{\prime}\right\rangle=e^{-i m_{e} \sum_{i} \mathbf{v} \cdot \hat{\mathbf{x}}_{i}}\left|\Phi_{e c}\right\rangle
$$

The Migdal Factor:

$$
Z_{F I}\left(\mathbf{q}_{e}\right)=\int \prod_{i} d^{3} \mathbf{x}_{i} \Phi_{E_{e c}^{F}}^{*}(\{\mathbf{x}\}) e^{-i \sum_{i} \mathbf{q}_{e} \cdot \mathbf{x}_{i}} \Phi_{E_{e c}^{I}}(\{\mathbf{x}\})
$$

$$
\begin{array}{r}
\sum_{F}\left|Z_{F I}\right|^{2}=\left|Z_{I I}\right|^{2}+\sum_{n, \ell, n^{\prime}, \ell^{\prime}} p_{q_{e}}^{d}\left(n \ell \rightarrow n^{\prime} \ell^{\prime}\right)+\sum_{n, \ell} \int \frac{d E_{e}}{2 \pi} \frac{d}{d E_{\rho}} p_{q_{e}}^{c}\left(n \ell \rightarrow E_{e}\right) \\
\text { elastic }
\end{array}
$$

Migdal Effects - Inelastic Channel of DM detection

- Additional electron emission coming from the moving nucleus.
- Observed like an ER event but actually a NR.
- Misleading NR/ER Distinguishment
- Easier (More energetic signals produced) to be detected with given analyzable thresholds
- Allowing more opportunity of low-mass DM exchanged enough amount of energy with heavy nuclei to be detected.

Migdal-Photoabsorption Relation

$$
\begin{aligned}
q^{\mu} J_{\mu} & =0 \\
\left|\hat{y}_{\Lambda}\right|^{2} \sim 2\left|\hat{J}_{1}\right|^{2} & =2 \frac{\omega^{2}}{|\overrightarrow{q| |}|}|\rho|^{2}
\end{aligned}
$$

transition matrix element

Migdal:

$$
\begin{gathered}
M_{F I}=\langle F| e^{-i \frac{m_{e}}{m_{A}} \vec{q}_{A} \cdot \sum_{i=1}^{Z} \vec{r}_{i}}|I\rangle \\
M_{F I}^{(1)}=-i \frac{m_{e}}{m_{A}} \vec{q}_{A} \cdot \vec{D}_{F I}
\end{gathered}
$$

Photoabsorption:

$$
\begin{gathered}
P_{F I}=\hat{\varepsilon} \cdot\langle F| \sum_{i=1}^{Z} e^{i \vec{l} \vec{r}^{1} \vec{r}_{i}} \vec{\alpha}_{i}|I\rangle \equiv \hat{\varepsilon} \cdot \vec{O}_{F I} \\
\vec{O}_{F I}^{(E 1)}=i E_{r} \vec{D}_{F I}
\end{gathered}
$$

Dipole: $\vec{D}_{F I} \equiv\langle F| \sum_{i=1}^{Z} \vec{r}_{i}|I\rangle$
The leading order terms dominate when long wavelength limit valid. $\quad e^{i \vec{k} \cdot \vec{r}} \rightarrow 1$

Dipole Approx. for Xenon Photoionization

Event Rates of Migdal Effects

$$
\frac{d R}{d E_{r}}=n_{\chi} N_{T} \frac{m_{e}^{2}}{\mu_{N}^{2}} \overline{D^{2}} F I \int d E_{R} \tilde{\sigma}_{N}\left(q_{A}\right) E_{R} \eta\left(v_{\min }\right)
$$

$$
\frac{d R}{d E_{\mathrm{det}}}=\int d E_{r} \delta\left(E_{\mathrm{det}}-q_{\mathrm{nr}} E_{R}-E_{r}\right) \frac{d R}{d E_{r}}
$$

Easily Applied for Other Atoms

$$
\frac{d \sigma^{(\mathrm{MPA})}}{d E_{R} d E_{r}}=\frac{m_{e}^{2}}{\mu_{N}^{2} v_{\chi}^{2}} \tilde{\sigma}_{N}\left(q_{A}\right) \frac{E_{R}}{E_{r}} \frac{\sigma_{\gamma}\left(E_{r}\right)}{4 \pi^{2} \alpha}
$$

Another Application for Migdal Effect

$$
\begin{aligned}
& \mathrm{C} v \mathrm{NS}: \text { reactor } \bar{v}_{e}+\mathrm{Xe} \\
& \frac{d \sigma}{d E_{R}} \simeq \sum_{E_{e c}^{F}} \frac{d \sigma_{C \nu N S}}{d E_{R}} \times\left|Z_{F I}\left(q_{e}\right)\right|^{2} \quad \frac{d R}{d E_{r}}=\frac{G_{F}^{2} Q_{W}^{2}}{4 \pi} \frac{m_{e}^{2}}{E_{r}} \frac{\sigma_{\gamma}\left(E_{r}\right)}{4 \pi^{2} \alpha} \int d E_{\nu} f\left(E_{\nu}\right) \int d E_{R} F_{A}^{2}\left(q_{A}\right)\left(1-\frac{m_{A} E_{R}}{2 E_{\nu}^{2}}\right) E_{R}
\end{aligned}
$$

Thanks for your attention!

Reference: C.-P. Liu, Chih-Pan Wu, Hsin-Chang Chi, and Jiunn-Wei Chen,

"Model-independent determination of the Migdal effect via photoabsorption", Phys. Rev. D 102, 121303(R); arXiv:2007.10965

