

Model of magnetic monopole production in Y heavy-ion ultraperipheral collisions at the LHC $\overset{```}{}$

Wen-Yi Song, York University

Magnetic monopoles couple strongly to photons, making their production highly favored when ultrarelativistic heavy ions collide. Ultraperipheral collisions (UPC), where the ion-ion impact parameter exceeds the ion's diameter, act as an appreciable source of electromagnetic radiation. In the absence of dedicated searches to date in heavy-ion collisions at the LHC, a Monte Carlo model has been implemented to compute the monopole kinematics and production cross sections at the LHC's design collision energy.

I. Magnetic Monopoles

• Magnetically charged point particles that restore the symmetry of Maxwell's Equations

 $\vec{\nabla} \cdot \vec{E} = \rho_E \qquad \qquad \vec{\nabla} \cdot \vec{B} = \rho_M$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} - \vec{j}_M \qquad \qquad \vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{j}_E$

• A North (N) magnetic monopole is a source of a radial magnetic field.

III. UPC Parameters

• Four collision systems in comparison to protonproton collisions at design energy of 7 TeV per beam

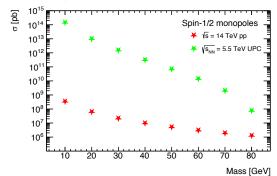
	$\sqrt{s_{NN}}$ [TeV]	Maximal √s _{γγ} [GeV]	Years
р	14	4.2 × 10 ³	2010 -
$^{16}_{8}0$	7.0	490	2022 - 2024
¹²⁹ ₅₄ Xe	5.9	204	2017
²⁰⁸ 82Pb	5.5	164	2010 -

• $\sqrt{s_{NN}}$: sum of beam energies carried by protons • Photon-photon effective collision energy $\sqrt{s_{\gamma\gamma}}$ restricts monopole masses in ion collisions

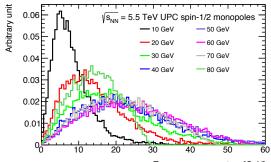
IV. Photon Distribution

- \bullet Fourier transform of the ion's electromagnetic field into a flux of virtual photons 1
- Photon probability scales quadratically as nuclear charge and inversely as its energy ²
- $\mbox{ }$ Geometric cut-off to exclude photons less than R_A from the ion

Needed to correctly model monopole cross sections and kinematics


References

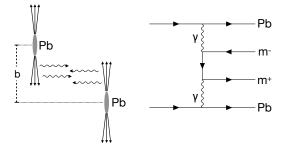
- [1] C. F. von Weizsäcker, 1934: Z. Physik 88, 612; E.
- J. Williams, 1934: *Phys. Rev.* **45**, 729.
- [2] J. D. Jackson, 1975: Classical Electrodynamics
- 2^{nd} Ed., John Wiley & Sons, New York
- [3] J. Alwall el al., 2007: JHEP 0709, 028.


V. Results and Outlook

Complete model in MADGRAPH5_aMC@NLO³

• Production in lead-lead ultraperipheral collisions dominant over proton-proton collisions for monopole masses up to 80 GeV

• $\sqrt{s_{NN}}$ restricts monopole kinematics



Transverse momentum [GeV]

- Future prospect: increased sensitivity to higher masses with higher $\sqrt{s_{NN}}\,$ in light-ion collisions

II. Monopoles in Ultraperipheral Collisions

Strong electromagnetic fields from ultrarelativistic high-charge ions (e.g. lead) as a flux of photons
Monopole pair production via photon fusion

• Uncertainty principle suppresses photon energies at impact parameter $b > 2R_A$ (nuclear radius)