

Dark Matter Search with a low-threshold SuperCDMS HVeV detector

2021/6/7 Ziqing Hong, for the SuperCDMS collaboration

Introduction

SuperCDMS uses cryogenic phonon-based detectors to look for a wide range of Dark Matter (DM) candidates

- Direct detection of DM with energy from eV to 10 GeV
- Nuclear-recoil and electron-recoil DM

Low-energy excess in multiple phonon-based DM searches

Low energy background in a SuperCDMS HVeV detector

Also in HVeV ERDM searches

- Unknown sources also observed in multiple charge based dark matter searches with SuperCDMS-HVeV detector
- Questions:
- Are these two groups of unknown sources related?
- What information can we extract from these events?
- If they're background, would this lead to ways to eliminate one or both?

D.W. Amaral et al, Phys. Rev. D 102, 091101 (2020)

SuperCDMS HVeV detector

Measuring energy with phonon sensors on silicon/germanium crystal

0V mode (V_{NTL}=0): Phonon energy = recoil energy

HV mode (V_{NTL}≠0): Phonon energy = recoil energy + NTL phonon energy

- 2.7 eV baseline resolution, 9.2 eV threshold [1]
 Best in class
- By measuring the background at different voltages with the same setup, we can better understand the nature of the unexplained excess
 - Quantified by ϵ_{eff} , the average energy to create an electron-hole pair

$$\bullet \quad n_{eh} = E_{Recoil} / \epsilon_{eff}$$

$$\begin{split} \mathrm{E}_{\textit{phonon}} &= \mathrm{E}_{\textit{recoil}} + n_{eh} e \mathrm{V}_{\mathrm{NTL}} \\ &= \mathrm{E}_{\textit{recoil}} \cdot \underbrace{\left(1 + e \mathrm{V}_{\mathrm{NTL}} / \epsilon_{eff}\right)}_{\mathsf{G}_{\mathsf{NTL}}} \end{split} \\ \end{split} \\ \text{The recoil energy is effectively amplified by } \mathrm{G}_{\mathsf{NTL}} \\ \text{via the NTL effect}^{\text{[2]}}. \end{split}$$

[2] B.S. Neganov and V.N. Trofimov, Otkrytia i Izobret. 146, 215 (1985), P.N. Luke, et. al, Nucl. Instrum. Meth. Phys. Res. A 289, 406-409 (1990). Ziqing Hong Low energy background in a SuperCDMS HVeV detector

^[1] R. Ren et al. ArXiv:2021.12430 (2020)

HVeV detector with 0V/60V/100V bias

- Detector operated in a surface lab at Northwestern University
- O(1) gram-day exposure at 0 V, 60 V and 100 V [1]

[1] D.W. Amaral et al, Phys. Rev. D 102, 091101 (2020)

"Normal" and "Anomalous" events in 0V and HV data

0V-HV comparison: Pulse shape

Burst events can behave like long-tail events if there is no NTL gain.

Low energy background in a SuperCDMS HVeV detector

0V-HV comparison: Energy spectra

$$\mathrm{E}_{phonon} = \mathrm{E}_{recoil} \cdot \overline{\left(1 + e \mathrm{V}_{\mathrm{NTL}} / \epsilon_{eff}
ight)}$$

Energy spectrum scales with $G_{_{
m NTL}}$.

By looking for the G_{NTL} where the spectra match each other best, we can measure the effective charge pair creation energy ϵ_{eff} of the background events.

Low energy background in a SuperCDMS HVeV detector

0V-HV comparison: Energy spectra

- We scale the HV spectra with different $G_{NTL}(\epsilon_{eff})$
- Minimize the χ^2 between 0V spectrum and the scaled HV spectrum.
- Data favors e_{eff}~4-5 eV
 - Just a rough estimate; uncertainty not quantified

10

Energy of the secondary pulses in HV burst events

Energy of secondary pulses are compatible with single electron-hole pair events (100 eV) with a recoil energy of ~2 eV

Low energy background in a SuperCDMS HVeV detector

Time [ms]

Trukhin, A. N., Jansons, J., Fitting, H. J., Barfels, T., & Schmidt, B. (2003). Cathodoluminescence decay kinetics in Ge+, Si+, O+ implanted SiO2 layers. *Journal of non-crystalline solids*, 331(1-3), 91-99.

Coincidence of burst

In a new setup, we have four detectors in the same cavity:

We see coincidence of burst events in multiple detectors.

Burst events are likely to have external origin, since they are usually seen in more than one detectors.

Comprehensive data analysis ongoing. Stay tuned!

Conclusion

- We see low energy excess in SuperCDMS HVeV detector
- 0V-HV comparison:
 - The excess at 0V in HVeV detector can be partly explained by burst events seen at HV
- Burst events are likely to have an external origin:
 - Most burst events have coincidence events in other detectors
 - Luminescence of SiO_2 in PCB may be one of the origins
 - This accounts for a good fraction of the unknown events in the HVeV ERDM search

Next steps:

Designing a new detector payload scheme with

- Minimal use of PCB/insulator
- Maximal detector coincidence tagging capability

Backup slides

Events that are compatible with PCB hypothesis

We see a group of ultra-slow (~10 ms) pulses in 0V and HV data.

1. They have ~100 times longer decay time than the events happen in detector crystal

Contraction of the second seco

2. A series of single electron-hole events can happen along the slow pulse in HV data

A paper on source of low-energy background

Du, P., Egana-Ugrinovic, D., Essig, R., & Sholapurkar, M. (2020). Sources of low-energy events in low-threshold dark matter detectors. *arXiv preprint arXiv:2011.13939*.

Three sources of low-energy background arising from interaction of high-energy particles:

- Cherenkov radiation
- Transition radiation
- Luminescence

Different experiments may have different dominating background origins.

0V-HV comparison: Pulse shape

Ziging Hong

2230-2730 eV non-burst event

Experimental setup

Energy estimator

MF = area of purple+yellow region

Low energy background in a SuperCDMS HVeV detector

Cuts

Livetime cut

Pulse width cut

Low energy background in a SuperCDMS HVeV detector