

Deep Underground Neutrino Experiment

review and recent progress

on behalf of the DUNE Collaboration

CAP Congress | 8 June 2021

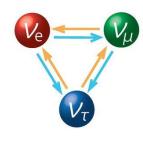
This talk

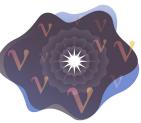
Review

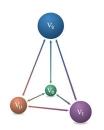
L B N FLong-Baseline Neutrino FacilityDeep Underground Neutrino Experiment

ProtoDUNE @ CERN Neutrino platform

Prototyping efforts & first results


Prospects DUNE's sensitivity


DUNE-Canada and how you can contribute



Primary physics program of DUNE

Oscillation physics

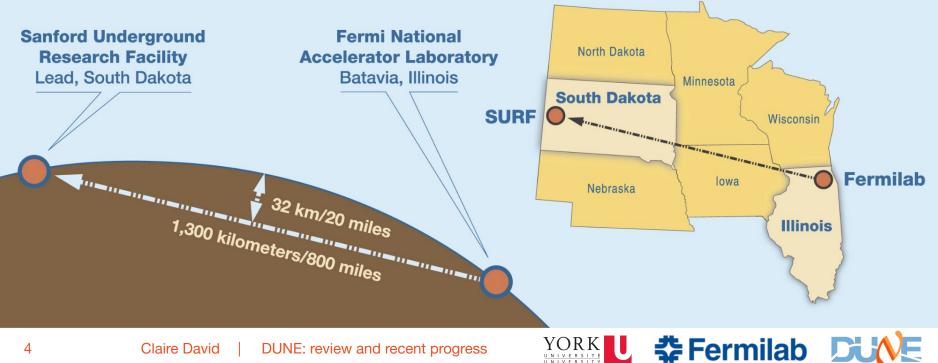
- Search for leptonic CP violation
- Do neutrinos oscillate the same way as antineutrinos?

‡ Fermilab

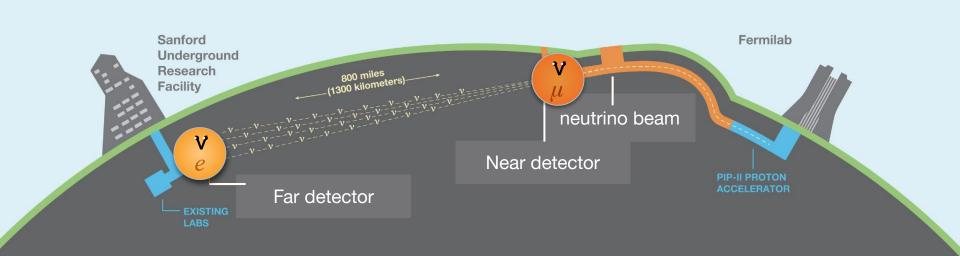
- Determine the neutrino mass hierarchy Is v₃ the lightest?
- Precision measurements on PMNS matrix parameters
- Supernova physics
 - What is the astrophysics of core-collapse supernova?
 - What are the properties of neutrinos from a supernova burst
 - Possibility to estimate direction: warning telescopes (light comes hours after v)

• Beyond Standard Model (BSM)

- Probing numerous BSM models on baryon number violation
- Non-standard Neutrino Interactions (NSI), sterile neutrinos, dark matter
- Sensitivity to proton decay, predicted by GUT models (e.g. p \rightarrow K⁺ \overline{v} channel)



DUNE: Deep Underground Neutrino Experiment


distance

E 🔨 v energy

Measuring v_{μ} survival/disappearance + v_{ρ} appearance probabilities \rightarrow function of

Long-baseline oscillation experiment

Need to model matter effects through Earth (full of electrons, no positrons)

Claire David | DUNE: review and recent progress

Appearance probability at 1285 km

DUNE will be sensitive to the shape of neutrino oscillation spectrum

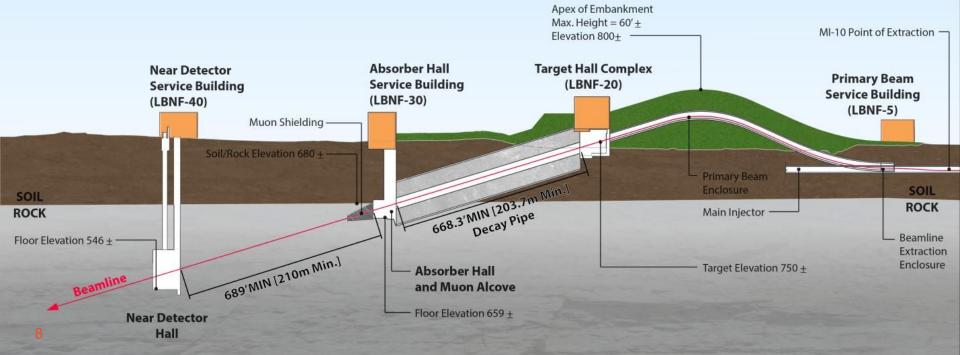
arXiv:2006.16043

Long-baseline Neutrino Facility (LBNF)

- DOE/Fermilab-hosted facilities project, with international participation LBNF
- DUNE The international scientific collaboration

204 institutions

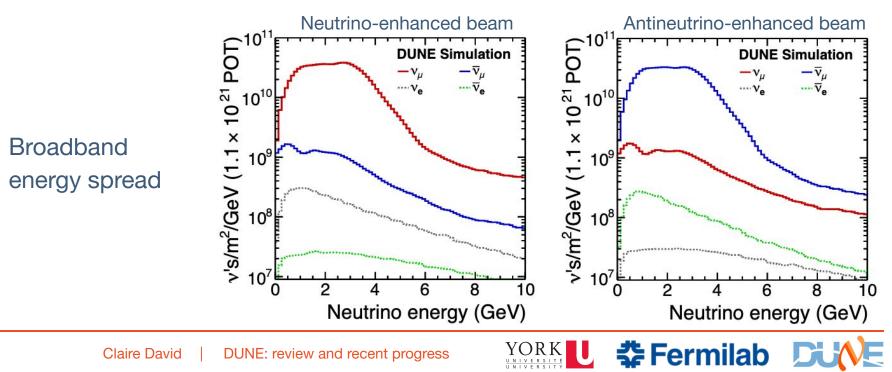
33 countries + CERN



Beamline

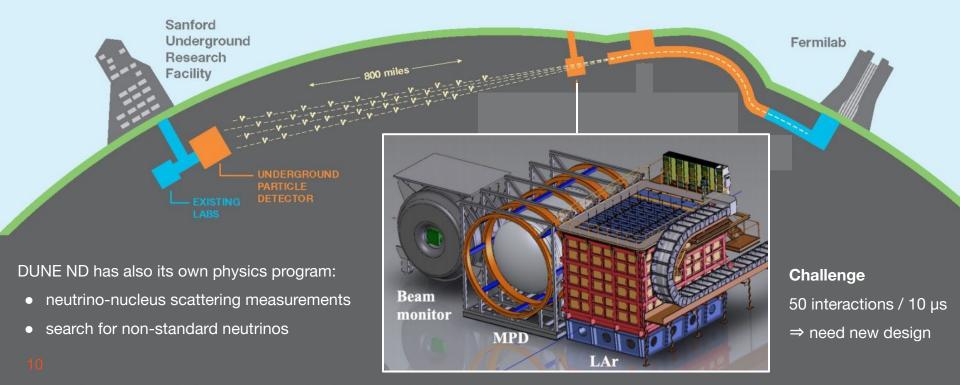
Horn-focused beamline

- 60 –120 GeV protons from Fermilab's Main Injector
- 200 m decay pipe at -5.8° pitch, angled at South Dakota (SURF)
- Initial power 1.1 MW, upgradable to 2.4 MW

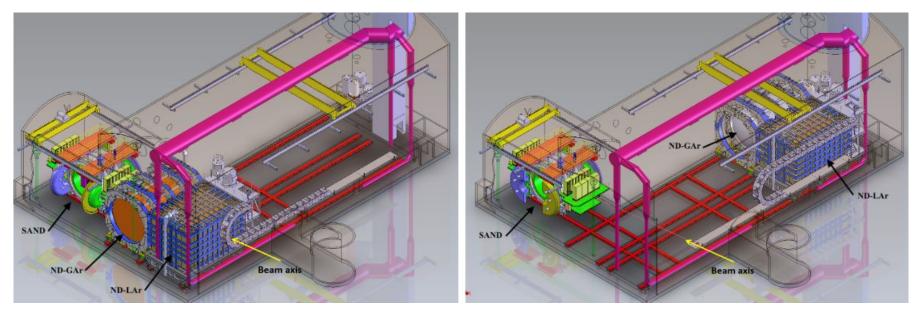


Beamline

9


Horn-focused beamline

- 60 –120 GeV protons from Fermilab's Main Injector
- 200 m decay pipe at -5.8° pitch, angled at South Dakota (SURF)
- Initial power 1.1 MW, upgradable to 2.4 MW


DUNE Near Detector complex

- Measures the neutrino beam rate and spectrum
- Constrains systematic uncertainties in neutrino flux, neutrino scattering cross sections

DUNE Near Detector CDR Reference

Conceptual Design Report (March 2021), now transitioning to TDR (2022)

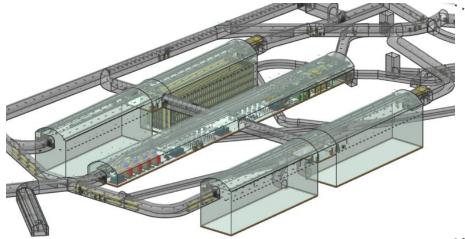
SAND System for on-Axis Neutrino Detection = tracker + ECAL \Rightarrow beam monitor

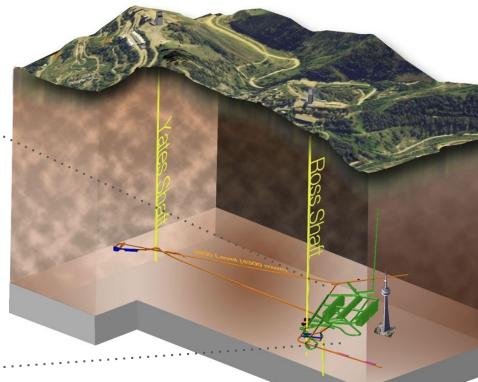
ND-LAr Liquid **Ar**gon detector (similar technology as Far Detector)

ND-GAr Gaseous Argon TPC and downstream muon tracker

11

can move over \neq angles off-axis \Rightarrow sample diff. E_v distributions

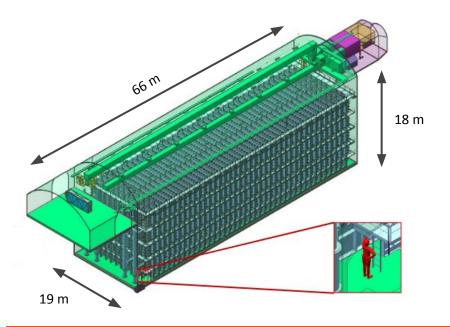

arXiv:2103.13910

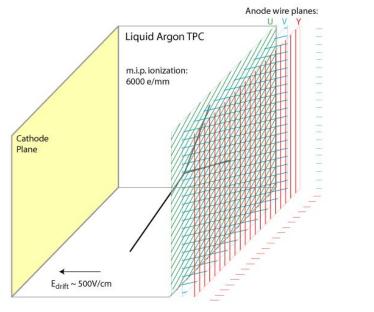


1285 km later...

DUNE's Far Detector

 Largest cryogenic instrument ever (89 kT) with 4 modules of 10 kt (fiducial) liquid argon each

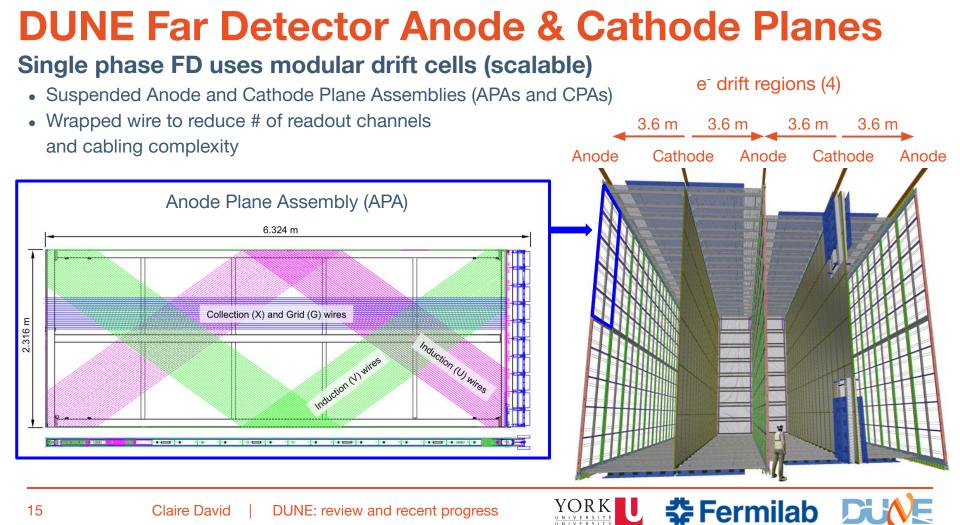

📙 🛟 Fermilab 🛛 🖸 🚺


Modules installed in stages & different detection technologies.

First module: single phase Liquid Argon Time Projection Chamber ← LArTPC Second module: single phase Vertical Drift (R&D ongoing)

DUNE Far Detector Single Phase design

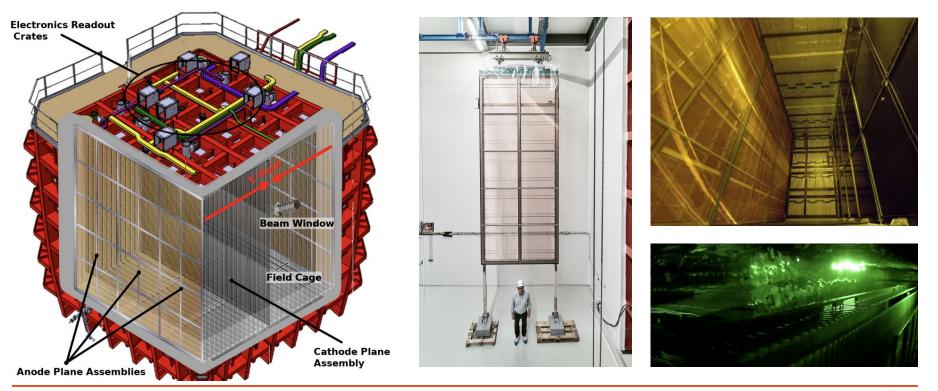
- Ionization readout: Anode Plane Assemblies (APA)
- 3 wire planes (2 induction +1 collection views)
- Photo-detections done by ARAPUCA (trap + SiPMs)



LArTPC technology

- 3D image of neutrino interactions with mm resolution
- LAr is good scintillator \Rightarrow provide t_0 (non-beam trigger)

🛟 Fermilab

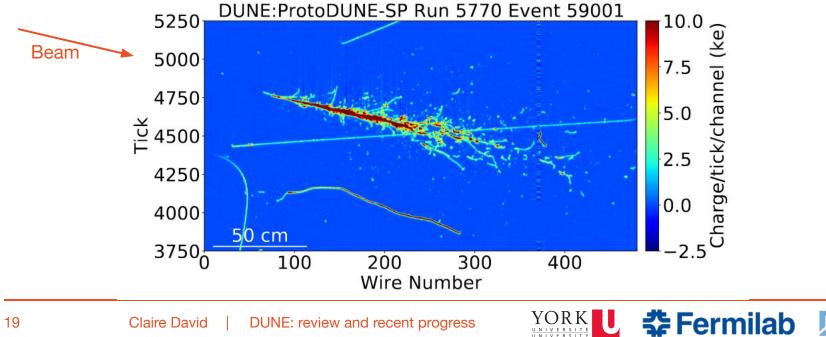

Meanwhile at CERN...

ProtoDUNE

ProtoDUNE: prototyping effort

CERN neutrino platform: 2 prototypes 1/20th the size of DUNE | 770 t total LAr mass

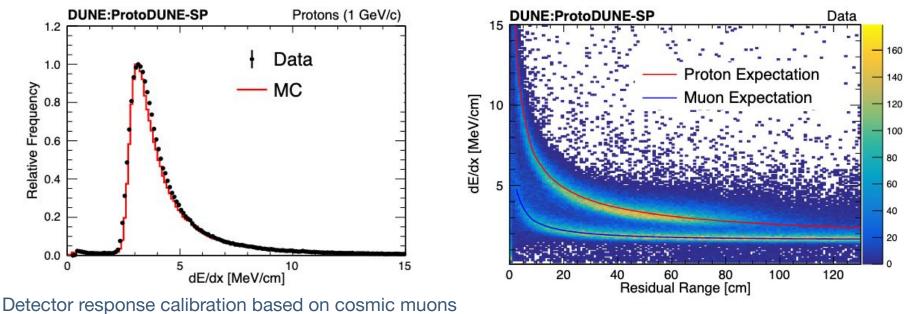
CERN Neutrino Platform


Dedicated H4-VLE beam line delivers electrons, pions, protons and kaons in the 0.3 – 7 GeV/c momentum range

First ProtoDUNE Single Phase results

Collected hadron data (beam) and cosmic rays from Fall 2018

Low noise levels | S/N ratio > 10 [> 40 for collection plane]


Example of an 6 GeV electron candidate event in the collection plane:

First results on ProtoDUNE SP

Performance meets or exceeds the DUNE specifications

⇒ success of Single-Phase detector design + informing calibrations & reconstruction for single-phase

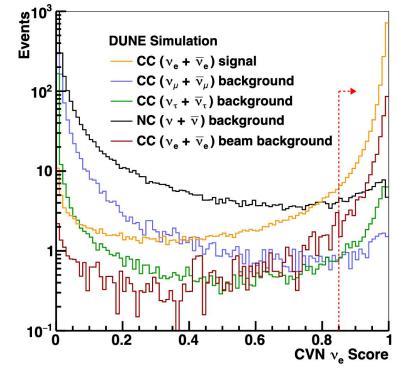
DUNE Far Detector

Excellent proton-muon separation

🛟 Fermilab

 \rightarrow good results for test beam protons and muons

Far Detector neutrino event reconstruction

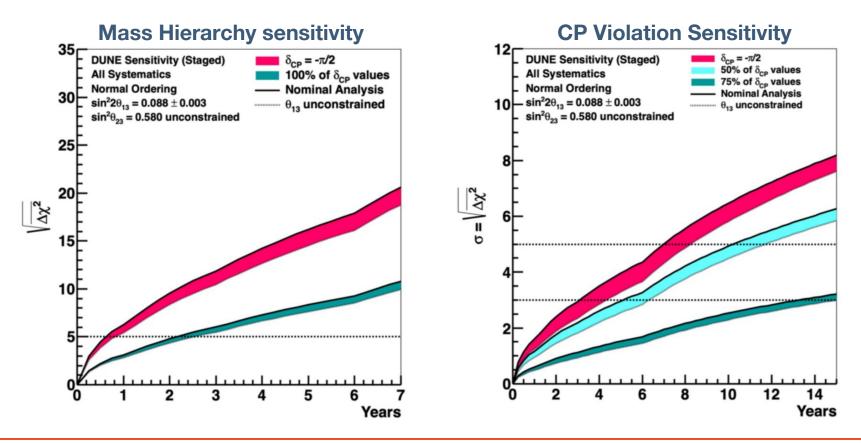


Event reconstruction and classification

Pattern recognition to reconstruct neutrino event in 3D

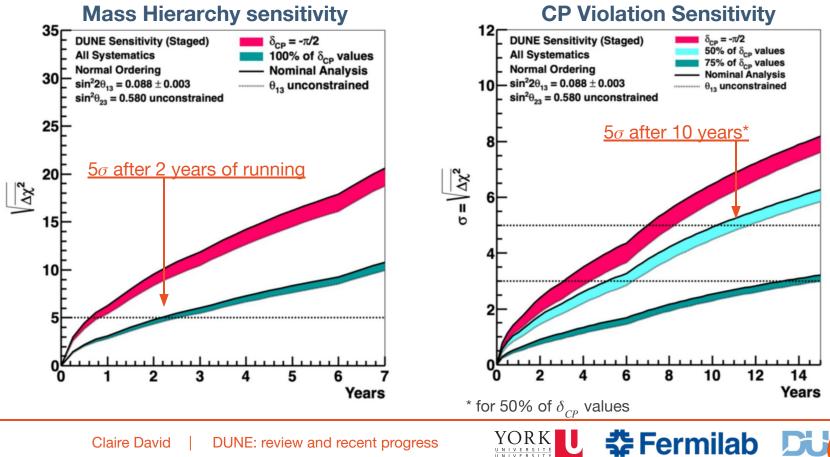
- Neutrino flavour classification done using Convolutional Neural Network (CVN)
- outperforms CDR estimates
- reach 90% efficiencies for $v_{e}^{}$ (95% $v_{\mu}^{}$)

```
Work in progress to evaluate DUNE CVN for 
ProtoDUNE-SP data
```

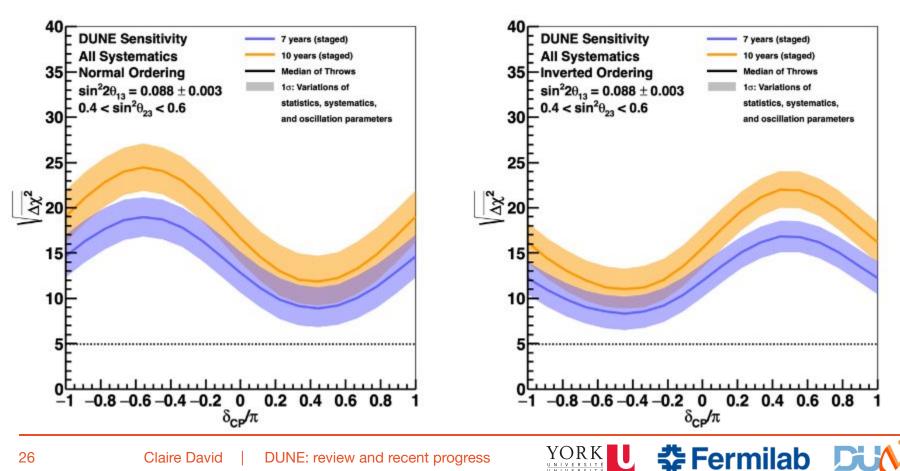


CVN v_e score for beam neutrino mode (red arrow \rightarrow TDR benchmark)

🛟 Fermilab

Sensitivities


Sensitivity vs time

YORK


‡ Fermilab

Sensitivity vs time

Mass hierarchy sensitivity

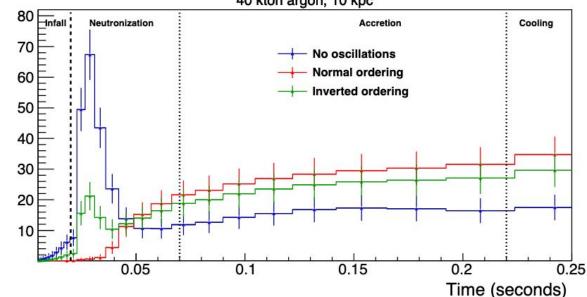
arXiv:2006.16043

Supernova Neutrino Bursts

DUNE Far Detector will be sensitive to core-collapse supernova in Milky Way neighborhood

- Estimated to occur every 30-200 years
- 99% of energy is carried away by neutrinos, giving unique information on:

Events per bin


- **cosmology**: core-collapse mechanism, black hole formation...
- o particle physics: flavour transformations in core, mass hierarchy, extra dimensions...

Primary interaction in argon:

 $v_e^{} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*}$

(unique among neutrino detectors)

- Excellent energy resolution with both TPC and photodetectors
- Sensitivity to v_e elastic scattering, which can provide directionality
- \Rightarrow can achieve 4.5° pointing resolution

40 kton argon, 10 kpc

More on the DUNE Physics Program

- Atmospheric and solar neutrinos
 - Can use atmospheric neutrinos to extract neutrino properties
 - Low-energy neutrino sensitivity for ⁸B and hep solar neutrinos under investigation
- Baryon number violation and proton decay search
 - DUNE will have large exposure (40 kton, 20+ y) and low background rates (1.5 km underground)
 - $\circ~$ Precision tracking of LArTPC technology \Rightarrow clear signature in channel p \rightarrow K⁺ $\overline{\nu}$
- Large catalog of Beyond Standard Model (BSM) searches at DUNE
 - Light sterile neutrinos
 - Non-standard interactions
 - Dark matter
 - Lorentz violation
 - Effective CPTv
 - Large extra dimensions
 - Neutrino tridents (Z' and muon g 2)

Detailed review by Nikolina Ilic at CAP Congress 2020 <u>link</u>

🛟 Fermilab

DUNE Timeline

DUNE-Canada

NSERC Discovery Grant (April 2020) and approved as Institute of Particle Physics (IPP) project (Sept. 2020)

Nikolina Ilić Pl UofT / IPP

Deborah Harris PI YorkU / Fermilab

Claire David PI YorkU / Fermilab

Nico Giangiacomi Postdoc

Matthew Man Graduate Student

Fady Shaker Postdoc

YORK UNIVERSITÉ

Minoo Kabirnezhad

Postdoc

‡Fermilab

Tejin Cai Postdoc

DUNE-Canada

NSERC Discovery Grant (April 2020) and approved as Institute of Particle Physics (IPP) project (Sept. 2020)

Deborah Harris

PI YorkU / Fermilab

DAQ system

FELIX

cards

readout

Nikolina Ilić PI UofT / IPP

Nico Giangiacomi Postdoc

Matthew Man Graduate Student

Fady Shaker Postdoc

Near Detector

algorithms

Reco-

Rowan Zaki Student Minoo Kabirnezhad Postdoc

Computing **Documentation** & Training

Analysis Facility

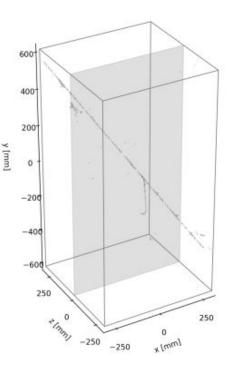
Claire David

Neutrino Interaction Model Development

Tejin Cai Postdoc

DUNE-Canada activities in the past year

Nov 2020 DUNE Expertise Sharing Workshop | 2-day event


Discussing areas of common interest: photon detection, DAQ, high intensity neutrino beams, liquid argon

- Jan 2021 DUNE Computing Training Remotely | 60 participants | Positive feedback
- Feb 2021GPU Hackathon (SFU)Improved the speed near detector Liquid Argon simulations by factor 10
- Apr 2021 Compute-Canada Resource Allocation DUNE gets VCPU and cloud storage for an "Interactive Analysis Facility" project

ND Prototype Test Runs \rightarrow

Cosmic ray interactions within the prototype module, imaged in full 3D using a LArPix system with approximately 80,000 pixels. Credit: Dan Dwyer, Berkeley Lab

May 2021 DUNE Computing Training, augmented edition New website based on Software Carpentry format + quizzes, live Q&A and asynchronous lectures | 112 registrants | very positive feedback

‡ Fermilab

Summary & Outlook

- DUNE is a unique broadband energy neutrino experiment designed for discoveries
- Very ambitious physics program, from v oscillation to supernova to proton decay
- Unprecedented sensitivity to mass hierarchy, CP violation & numerous BSM searches
- protoDUNE is running smoothly and exceeding expectations
- DUNE-Canada is growing: good timing to get involved!

Write us! dune-canada@fnal.gov

References

June 2020

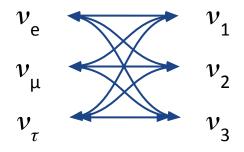
Long-baseline neutrino oscillation physics potential of the DUNE experiment | arXiv:2006.16043

August 2020

Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment | arXiv:2008.06647

March 2021

Deep Underground Neutrino Experiment Near Detector Conceptual Design Report | arXiv:2103.13910



Neutrinos

• There are 2 basis that are 'rotated', with superposition of states:

Mass eigenstates neutrino in propagation free flight

• The Pontecorvo–Maki–Nakagawa–Sakata (PMNS) unitary matrix

$$egin{pmatrix}
u_e \\

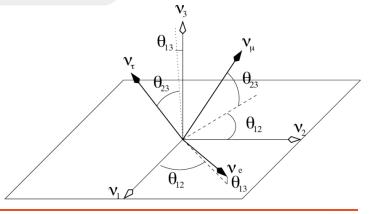
u_\mu \\

u_ au \end{pmatrix} = egin{pmatrix}
PMNS \\
matrix \end{pmatrix} egin{pmatrix}
u_1 \\

u_2 \\

u_3 \end{pmatrix}$$

See extra slides for details


‡Fermilab

What we know

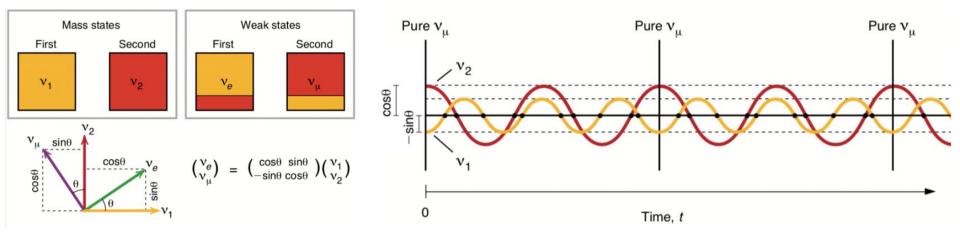
- Parametrization:
- 3 rotations

 $c_{ij} \equiv \cos \theta_{ij}, \, s_{ij} \equiv \sin \theta_{ij}$

Only 4 parameters: 3 angles : θ_{12} , θ_{13} , θ_{23} Ο 1 phase δCP Ο

DUNE: review and recent progress Claire David

Number freak?


Check www.nu-fit.org

Neutrino oscillations

Simplified 2 neutrino model.

Superposition of mass eigenstates with different 'phases'

‡ Fermilab

Time evolution \Rightarrow periodic **'appearance'** and **'disappearance'** of a weak/flavour state.

Neutrinos have mass

But why so light?

See-saw mechanism? = heavy (possibly GUT-scale) right handed (RH) neutrinos alongside light left-handed (LH) neutrinos

Implications

 \Rightarrow the physics of neutrino mass is connected to extremely high energy scales

Potential new physics signatures in oscillation experiments

non-unitarity, non-standard interactions, > 3 neutrinos, large extra dimensions, effective CPTv, decoherence, neutrino decay, ...

See-saw mechanism:

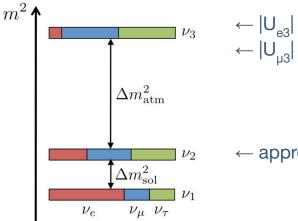
P. Minkowski (1977); M. Gell-Mann, P. Ramond and R. Slansky (1979); and T. Yanagida (1979)

lightest

neutrino

neutrino

 10^{-}



Neutrino mixing

Experimental question:

 $\sin^2\theta_{23} \neq 0.5?$

Non-maximal mixing? If so, which way does it break?

 $\begin{array}{ll} \leftarrow |U_{e3}| \neq 0 \ ? & \text{recent discovery} \\ \leftarrow |U_{\mu3}| \neq |U_{\tau3}| & \text{maximal mixing} \end{array}$

← approx 1:1:1 ratio

The "?"

Why massive? Why so light?

Mixings and mass hierarchy

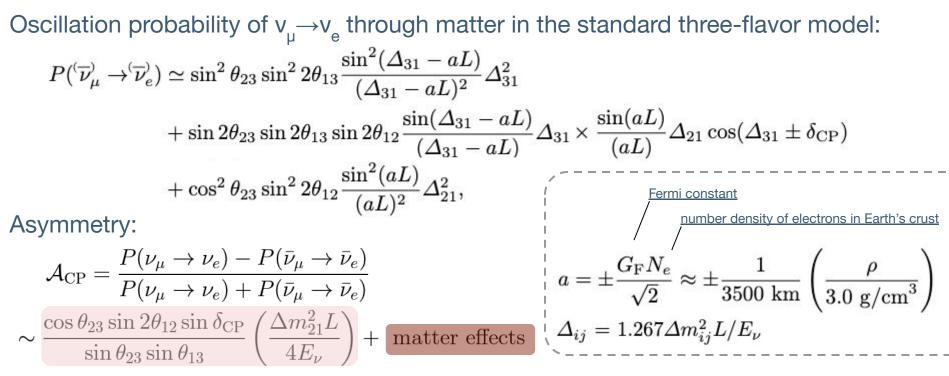
CP violation Are neutrinos oscillating the same way as antineutrinos?

New source of CP violation required to explain baryon asymmetry of universe Neutrino CP violation allowed in vSM, but not yet observed \rightarrow experimental challenge $\sin \delta \neq 0$?

The "?"

Why massive? Why so light?

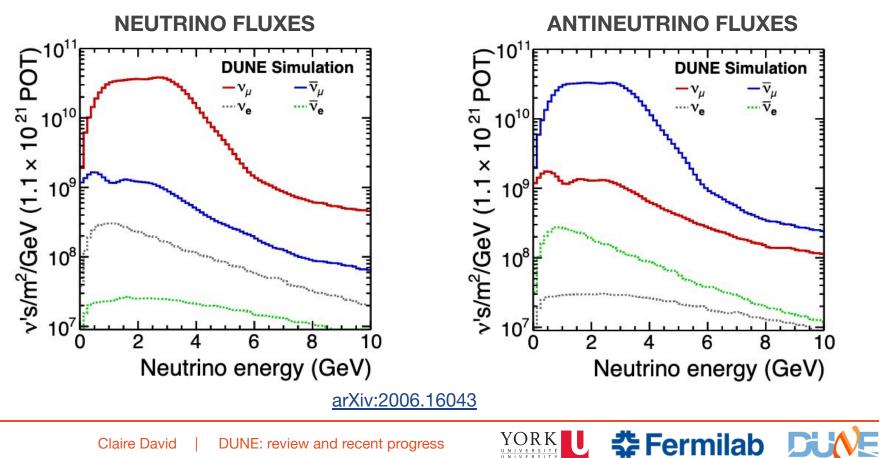
Mixings and mass hierarchy


CP violation

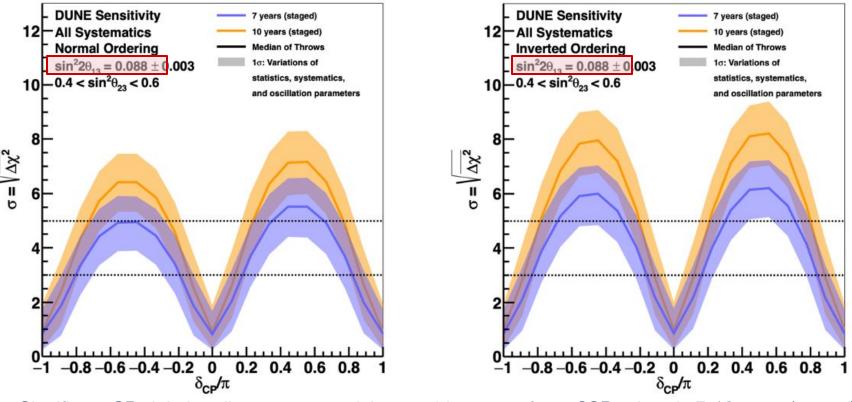
Beyond Standard Model

Baryon number violation, Non-Standard Neutrino Interactions (NSI), dark matter, sterile neutrino mixing ... Also proton decay predicted by GUT models decay $p \rightarrow K^+ \overline{v}$

Neutrino oscillation in matter



In the GeV range of E_v , the degeneracy between the asymmetries from matter effect and C_{PV} effect is resolved for baselines > 1200 km.


44

Energy spread: fluxes at the Far Detector

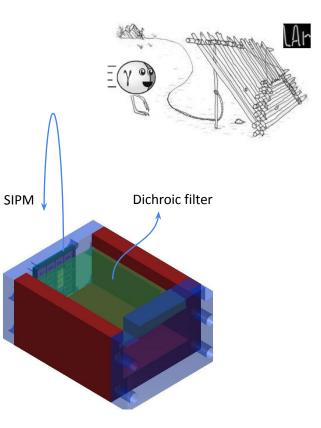
CP-violation significance vs true $\boldsymbol{\delta}_{\text{CP}}$

arXiv:2006.16043

‡ Fermilab

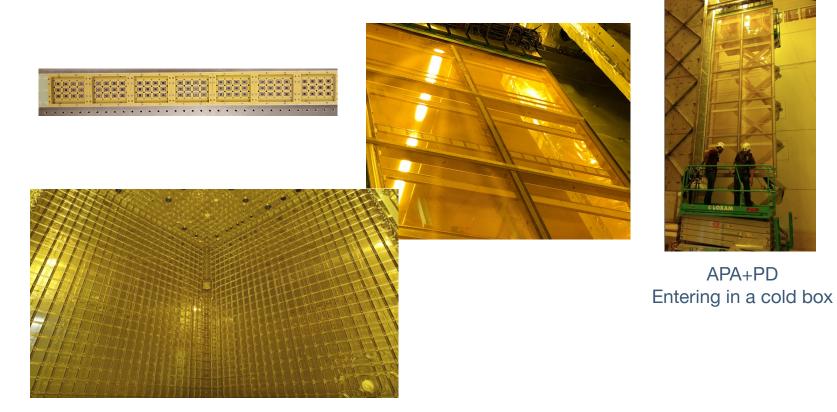
Significant CP violation discovery potential over wide range of true δCP values in 7-10 years (staged)

ARAPUCA


Goal

Develop an efficient photon collector system which allows to increase the effective area of the active devices (SiPMs).

ARAPUCA = trap for birds in native Brazilian


Basic Idea:

- Trap photons inside a box with a high reflective internal surface After some reflections
- 2. Photons will be detected by a photo-sensor.

ARAPUCA

T2HK and DUNE Comparison

Slide courtesy of Ryan Patterson

(10 yrs, staged deployment)		T2HK	DUNE	
CP violation	δ resolution	7° – 21°	7° – 15°	1
	3σ coverage	78%	74%	≻ similar
	5σ coverage	62%	54%	J
∨MH	sens. range	5σ – 7σ	8σ – 20σ+	> DUNE superior
octant	sens. @ 0.45	5.8σ	5.1σ	} similar
	5σ outside of	[0.46, 0.56]	[0.45, 0.57]	
p decay (90% C.L.)	p→⊽K+	>2.8e34 yrs	>3.6e34 yrs	} mode dependent
	p→e⁺π ⁰	>1.2e35 yrs	>1.6e34 yrs	
supernova v (10 kpc or relic)	SNB \overline{v}_{e}	130k evts		1
	SNB v_{e}		3k evts	complementary channels
	relic $\overline{\nu}_{e}$	100 evts, 5σ		(v_e vs. \overline{v}_e , though Hyper-K has more SN events total)
	relic v_e		30 evts, 6σ]]
NSI (90% C.L.)	$ \varepsilon_{\mu e} $	<0.34	<0.05	ון
	$ \varepsilon_{\mu\tau} $	<0.27	<0.08	DUNE superior
	$ \varepsilon_{\tau e} $	<0.98	<0.25	J

DUNE Collaboration

1347 collaborators

204 institutions

33 countries + CERN

