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Super-
Kamiokande

The Super-K & Hyper-K Experiments
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Current generation Super-K and next generation Hyper-K 
are world-leading neutrino experiments

Broad & ambitious physics programmes covering many 
neutrino sources and proton decay measurements

Water Cherenkov detector technology provides huge target 
mass with excellent particle ID and reconstruction capabilities

Intermediate Water 
Cherenkov Detector (IWCD)

~ 295 km~ 1 km

J-PARC 𝜈 beam

280 m

Near detectors

Proton decay

Solar 𝜈
Atmospheric 𝜈 Supernova 𝜈

Hyper-Kamiokande

Water Cherenkov 
Test Experiment 

(WCTE)
at CERN

See also talks by:  P. de Perio (T2K, SK & HK, Tue), M. Yu (T2K CCπ0, Thu)
B. Jamieson (Photogrammetry, Thu), V. Gousy-Leblanc (PTF, Thu)
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● Measures of flux and cross-section of mostly un-oscillated 
beam to reduce systematics at far detector

● Located ~ 1 km from ν beam source

● Moves vertically in ~50 m tall pit
○ spans range of angles off axis from ν beam for

different ν energy spectra

● 6 m tall x 8 m diameter surrounded with ~ 500 multi-PMT 
modules (mPMTs)
○ 8 cm PMTs: Better position resolution

                    < 1 ns timing resolution
○ Additional directionality information
○ mPMTs will also be used for WCTE
○ Also in consideration for portion of far 

detector photo-coverage

See also talks by
R. Akutsu (neutrons in IWCD, Thu)

L. Koerich (mPMT development, Wed)

The Intermediate Water Cherenkov Detector
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Reconstruction for WC detectors
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Reconstruction software is essential for

● Particle type identification
○ Separate signal events

 from background

● Particle momentum, direction, position
○ Kinematics essential to determine incoming neutrino energy
○ Neutrino energy affects oscillation probability, for oscillation 

parameter measurements
○ Kinematics also useful for signal / background classification

● Separating & reconstructing multi-ring events
○ Events with multiple particles / rings 

contribute to both signal & background
○ Pile-up of events will be significant in 

IWCD detector

π0

e

μ
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Limit of traditional maximum-likelihood reconstruction methods (fiTQun) is 
being reached
● Computation time is becoming a limiting factor

○ Larger far detector with more PMTs
○ Smaller intermediate detector requires scaled down resolutions
○ Improving resolutions requires more complex algorithms with fewer 

approximations

ML and deep neural networks have potential to push reconstruction further
● Very successful in areas of computer vision and image processing
● Becoming common in HEP applications beyond just e.g. event selections
● Potential to use all information without detector model approximations
● Very fast to run once neural networks have been trained

○ fiTQun on CPU: < 1 event per minute
○ ML reconstruction on GPU: 100,000 events per minute

Machine learning reconstruction for WC

5

See also talk by 
W. Fedorko

(ML in particle 
physics, Thu)
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Initial studies to classify μ/π0/e/γ particle types
● μ vs e is classified extremely well by 

traditional methods (>99% accuracy)
● e vs π0 works reasonably well, but could 

be improved
● e vs γ has not been used successfully 

with traditional methods
Simulated 3M of each in IWCD detector
● 0 - 1 GeV energy above threshold
● Uniform positions, isotropic directions
● Vertical and horizontal reflections for 

data augmentation
Exploring various network architectures

Particle type classification muon

electron
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mPMT: 19 x 3” PMTs

16
 ro

w
s

12 mPMT “diameter”

40 columns
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CNN architecture
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P(μ±)P(e±) P(π0) P(γ)

1. Convolution over mPMTs 2. Standard CNN convolutions & down-samples

3. Fully connected 
neural network

Full cylinder of mPMTs is unwrapped onto flat image
● One pixel per multi-PMT
● Charge (& time) of 19 PMTs per mPMT
● No special treatment at barrel / end-cap boundary

○ Alternative projections from cylinder to grid have also been explored
Network based on ResNet-18 CNN architecture[arXiv:1512.03385]

19 for charge
+19 for time

1x1 pixel convolution over 
the mPMT channels
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t q x y z

t q x y z

t q x y z

PointNet architecture
PointNet is designed to work on ‘point clouds’ rather 
than images
● Each hit PMT is a ‘point’ with time, charge & 

position, not fixed to grid
○ CNN learns translation-invariant functions on 

image
○ PointNet learns symmetric functions on point 

clouds
■ Symmetric: ordering of points cannot affect 

outcome

● Convolution-like operations act on each point’s 
charge, time and position

● Information flows between points by learning 
global transformations applied to all points

● Can apply to any detector geometry
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PointNet MLP (1x1 convolution 
on point cloud)

features

features



CAP Congress, 7th June, 2021N. Prouse, TRIUMF

Classification results

● νμ beam produces mostly μ, need rejection 
factor of 1000 for νe measurement 

● Increased e- / μ discrimination across energies

● π0 is significant background to e- signal
● Increased e- / π0 discrimination, particularly at 

challenging energies

Comparison of ResNet to traditional maximum-likelihood method (fiTQun)

e- efficiency at 5% π0 mis-ID rate e- efficiency at 0.1% μ mis-ID rate 

9
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Classification results

● e- / γ discrimination with fiTQun not been 
successfully used 

● Statistical separation significantly improved with 
ResNet

● ResNet has only been used with charge 
channels so far

● PointNet with charge+time gives significant 
advantage

   γ and e- almost indistinguishable in water Cherenkov detectors

e- efficiency at 0.1% μ mis-ID rate 

10



CAP Congress, 7th June, 2021N. Prouse, TRIUMF

Position, direction, energy reconstruction
Similar ResNet architecture as used for classification
● Output reconstructed quantities instead of classification variables
● Use Huber loss to minimise true-reconstructed residuals
● ResNet is outperforming fiTQun at energy and direction reconstruction

11
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Position, direction, energy reconstruction
● ResNet is 

outperforming 
fiTQun overall
at position 
reconstruction 
○ Better in 

longitudinal 
direction
(along direction 
of particle track)

○ But worse in 
transverse 
direction

12
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Segmentation networks Charge data π0 event

Need to separate out complex multi-ring 
events or multi-vertex pile-up events
● Classification networks can be extended to 

perform segmentation
○ Encoding part of the network is the 

similar to classification
○ Segmentation part of the network provides 

output for each pixel
■ Deconvolutions and upsampling reverse 

convolutions and downsampling
○ Currently using U-Net and FRRN

● Starting development with π0 events
○ π0 decay to produce two γ rings
○ Higher energy π0 have overlapping rings

13

Segmentation 
truth

gamma

gamma

Dark noise

Multi-parent
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Segmentation results
Charge data

Works well with 
separated or partially 
overlapping rings

14

Segmentation 
truth

Reconstructed 
segmentation 
using FRRN
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Segmentation results
Charge data

Poor reconstruction 
with some more 
overlapping rings

15

Segmentation 
truth

Reconstructed 
segmentation
using FRRN
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Hyper-kamiokande, the next-generation water Cherenkov neutrino detector has begun 
construction to start operation in 2027
● Both the far detector and IWCD will require new techniques to improve 

reconstruction, suppress backgrounds and reduce systematics

Machine learning can bypass the model approximations of old methods
● ResNet CNN and PointNet architectures already outperforming traditional methods

○ Improved reconstruction of particle position, direction and energy
○ Classification of  particle types improves on existing selections and enables 

new analyses
● Additional benefit of huge increase in speed of reconstruction

Exploring other areas where machine learning can provide benefits
● Segmentation of multi-ring events looks promising
● Extending IWCD studies to Super-K and Hyper-K far detectors
● More ideas and studies in the pipeline

Summary

16

WatChMaL.org
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Appendix
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WatChMaL: cross-collaboration group formed to explore ML for WC

Common challenges for ML with WC detectors
● Cylindrical geometry
● High-resolution, sparse data

Many physics goals
● Maximise precision of new detectors
● Reconstruct complex event topologies
● Discriminate electron and gamma rings
● Improving detector calibration & systematics

Machine learning reconstruction

18

WatChMaL.org
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February 2020: Budget approved by Japanese government

May 2020: Univ. of Tokyo President and KEK Director General 
signed MOU:
 Univ. of Tokyo to construct & operate Hyper-K detector
 KEK to upgrade & operate J-PARC neutrino beam Hyper-Kamiokande

The Hyper-K Experiment

19

Access tunnel

Construction has 
started for operation 

to begin in 2027!
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Hyper-K far detector

3rd generation of WC detectors at Kamioka

8 x increase in fiducial mass over Super-K
72 m tall x 68 m diameter = 258 kt total mass
                                            188 kt fiducial mass

Baseline design: 40,000 B&L 50 cm PMTs
= 40% photo-coverage

New photo-detector technology to
provide increased sensitivity

50cm MCP PMT

Hyper-K’s WC detectors

Hyper-Kamiokande

Super-
Kamiokande

Kamiokande

50cm B&L PMT

20
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Hyper-K’s WC detectors
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Intermediate detector (IWCD)

Located ~ 1 km from beam source
6 m tall x 8 m diameter inner detector
~ 500 multi-PMT modules

Measure combination of flux and cross-section to 
reduce systematics at far detector

High event rate, same detector technology and 
target nuclei as far detector

Moves vertically in ~50 m tall pit
measuring different off-axis angles gives different ν 
energy spectra
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Hyper-K’s WC detectors
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Off-axis spanning detector

ν energy spectrum depends on angle off-axis 
to the neutrino beam

Far detector @ 2.5° for peak at ~600 MeV

Moving IWCD varies angle, allowing 
measurements at different energies

Linear combinations allows mimicking mono- 
chromatic beam or far-detector spectrum
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Hyper-K’s WC detectors
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Also under investigation: Combining 50 cm PMTs + multi-PMT modules in far detector

8 cm PMTs: Better position resolution
                    < 1 ns timing resolution
Additional directionality information

Need reconstruction to exploit additional information  

Necessary for smaller detector size

Multi-PMT modules
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Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation

24

10 years with 1.3MW, T2K 2018 systematic error

Combine beam and atmospheric neutrino observations for maximum sensitivity
● δCP precision comes mostly through difference in P(νμ→νe) vs P(ν̅μ→ν̅e)
● Effect of δCP can be degenerate with normal vs inverted mass ordering 
● Atmospheric ν’s gain sensitivity to mass ordering by exploiting matter effect 

of Earth on oscillations
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Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation

25

Oscillation maximum is at around 0.6 GeV
● Dominant signal νe interaction is charged current quasielastic (CCQE)
● Potential background sources:

○ Neutral current interactions (νe or νμ) producing neutral pions or gammas
○ Muons from νμ misidentified as electrons from νe

CCQE signal

backgrounds
NCπ0 NCγ
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Hyper-K’s physics goals
Neutrino astrophysics
● Solar ν’s: day/night asymmetry; hep ν’s;

8B ν spectrum upturn
● Supernova ν’s: 1000’s ν events for nearby 

supernova pointing, time & spectrum 
analysis; search for supernova relic ν’s

26

Proton decay
● Search to order of 

magnitude greater lifetime 
than current limit

● 1035 years for p ⟶ e+ + π0

● 3×1034 years for p ⟶ ν̅ + K+
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Physics Motivations
New opportunities beyond simple reconstruction improvement

● NC γ discrimination and measurement

● Bottom-up calibration: Enable multitude of detector parameter variations

● Potential neutron tagging 
application
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Traditional reconstruction method
fiTQun: Likelihood-based reconstruction for higher energies
● Originally developed for Super-K detector

○ Based on algorithm of MiniBooNE: https://arxiv.org/abs/0902.2222

● Uses full information of unhit PMTs + time & charge of hit PMTs: 

● Probabilities calculated based on direct + scattered + reflected light

● Likelihood ratios used to distinguish particle types and single-ring / 
multi-ring event topology hypotheses

28

Probability of 
no hit at PMT

Probability of 
hit at PMT

Hit charge 
probability density

Hit time probability 
density

Likelihood to 
maximise

Candidate event 
hypothesis

https://arxiv.org/abs/0902.2222
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WatChMaL: cross-collaboration group formed to explore ML for WC

Common challenges for ML with WC detectors
● Cylindrical geometry
● High-resolution, sparse data

Many physics goals
● Maximise precision of new detectors
● Reconstruct complex event topologies
● Discriminate electron and gamma rings
● Improving detector calibration & systematics

Machine learning reconstruction

29

WatChMaL.org
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The IWCD detector

30

Off-axis spanning detector

ν energy spectrum depends on angle off-axis 
to the neutrino beam

Far detector @ 2.5° for peak at ~600 MeV

Moving IWCD varies angle, allowing 
measurements at different energies

Linear combinations allows mimicking mono- 
chromatic beam or far-detector spectrum
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Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation
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10 years with 1.3MW, T2K 2018 systematic error

Combine beam and atmospheric neutrino observations for maximum sensitivity
● δCP precision comes mostly through difference in P(νμ→νe) vs P(ν̅μ→ν̅e)
● Effect of δCP can be degenerate with normal vs inverted mass ordering 
● Atmospheric ν’s gain sensitivity to mass ordering by exploiting matter effect 

of Earth on oscillations



CAP Congress, 7th June, 2021N. Prouse, TRIUMF

Hyper-K’s physics goals
Long-baseline neutrino oscillations: CP violation

32

Oscillation maximum is at around 0.6 GeV
● Dominant signal νe interaction is charged current quasielastic (CCQE)
● Potential background sources:

○ Neutral current interactions (νe or νμ) producing neutral pions or gammas
○ Muons from νμ misidentified as electrons from νe

CCQE signal

backgrounds
NCπ0 NCγ
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Hyper-K’s physics goals
Neutrino astrophysics
● Solar ν’s: day/night asymmetry; hep ν’s;

8B ν spectrum upturn
● Supernova ν’s: 1000’s ν events for nearby 

supernova pointing, time & spectrum 
analysis; search for supernova relic ν’s
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Proton decay
● Search to order of 

magnitude greater lifetime 
than current limit

● 1035 years for p ⟶ e+ + π0

● 3×1034 years for p ⟶ ν̅ + K+
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Particle type classification
New opportunities beyond simple reconstruction improvement

● NC γ discrimination and measurement

● Bottom-up calibration: Enable multitude of detector parameter variations

● Potential neutron tagging 
application

34
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Traditional reconstruction method
fiTQun: Likelihood-based reconstruction for higher energies
● Originally developed for Super-K detector

○ Based on algorithm of MiniBooNE: https://arxiv.org/abs/0902.2222

● Uses full information of unhit PMTs + time & charge of hit PMTs: 

● Probabilities calculated based on direct + scattered + reflected light

● Likelihood ratios used to distinguish particle types and single-ring / 
multi-ring event topology hypotheses

35

Probability of 
no hit at PMT

Probability of 
hit at PMT

Hit charge 
probability density

Hit time probability 
density

Likelihood to 
maximise

Candidate event 
hypothesis

https://arxiv.org/abs/0902.2222
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CNN architecture 
Convolutional neural networks hugely successful in image processing

image or 
feature map convolution features

 
 

 
 

 
● End with 1-D array of features, feed into traditional fully-connected neural network
● Learn convolution and final network weights through ‘back-propagation’ of loss

repeat

© User:Aphex34 / Wikimedia Commons / CC-BY-SA-4.0

 
 

 
● Downsample image (e.g. 2x2 max-pooling)

○ Decreases number of pixels

 
● Scan many small (e.g. 3x3) convolution kernels across image

○ Increases number of features

● Start with image with pixel values (‘features’): T and Q at each PMT

36

https://commons.wikimedia.org/wiki/User:Aphex34
https://commons.wikimedia.org/
https://creativecommons.org/licenses/by-sa/4.0/
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CNN architecture

Mostly using ResNet-18 architecture [arXiv:1512.03385]
● Initial 1x1 convolution added to act on the 19 PMTs of each mPMT
● Also explored deeper networks with small improvement

Full cylinder of mPMTs is unwrapped onto 40x40 image
● 38 channels: charge & time of 19 PMTs per mPMT
● No special treatment for geometrical effects at 

boundary between barrel and end-caps
● Data augmented by reflecting / rotating around tank axis

19 for charge
+19 for time

37
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CNN architecture
Treating each PMT inside mPMT as a channel, starting with 1x1 convolution
➔ equivalent to doing a ‘convolution’ over each mPMT

38

Equivalent operation

features
features
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Data augmentation
Effectively increase dataset size by 
implementing transformations of existing 
events (data augmentation)
●  Started by simplest transformations

○ Horizontal flip of image
○ Vertical flip of image
○ Both horizontal and vertical flip

● In future could also do rotation of 180° 
around tank axis
○ Can only do 180° since end-cap 

mPMT positioning is symmetric by 
90° rotations but PMTs within mPMT 
symmetric by 60° rotations

4x increase in dataset size allows network to learn more real features 
without overfitting

39
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Topological map to square
Alternative map onto square with boundary 
conditions preserving topology of cylinder

● Cut open along barrel to centre of 
end caps (solid line)

● Deform onto square, keeping  density 
of PMTs constant

● Place mPMTs onto nearest pixel

● Use boundary conditions identifying 
edges of square (indicated by arrows)
○ Pad image with copy of pixels from 

the corresponding edge
40
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PointNet architecture
Some changes to standard PointNet give improvements
● Severe overfitting until max. features reduced from 1024 to 256

○ Possibly due to limited batch size with larger network
○ Data augmentation could also help

● We find that mean pool works better than standard max pool here
○ PointNet usually picks key points to learn features, but aggregating 

information from all points seems better for our tasks

41

Using maxpool Using meanpool
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PointNet architecture

In MLP layers, each point is treated identically with shared weights
● Similar to each pixel treated the identically in a CNN
● But without downsampling, information does not transfer between points

Instead ‘T-Nets’, resembling PointNet, learn transformations of the points
● Linear transformation is learnt to e.g. rotate all input vectors
● Feature transform allows global information to affect individual points

Single downsampling layer at the end of the network collapses all points
42
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Cherenkov ring generator

Investigating hybrid method using generative network
● Generative network can predict PMT hit charge and time
● Use to replace likelihoods in traditional reconstruction
● Combine learning ability of CNN with physics domain knowledge of 

traditional reconstruction
● Simple replacement for existing reconstruction in full analysis chain

43
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Cherenkov ring generator

Network outputs likelihoods for hits observed at PMT
● Probability of PMT being hit
● Gaussian pdf (μ, σ) for charge

44
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Cherenkov ring generator
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Generative networks

46
GAN generated events Geant4 simulated events

Also considering using generative networks 
for improved detector systematics
● Train generative network to reproduce 

real data: removed dependence on MC
● Train GAN to take simulated event and 

make it look like real data
○ Reduce detector systematics by

‘fixing’ mismodelled detector
simulation

● Initial work on VAE showed some 
promise, but struggled with noise 
and sharp details

● Now we are investigating GANs

arXiv:
1911.02369


