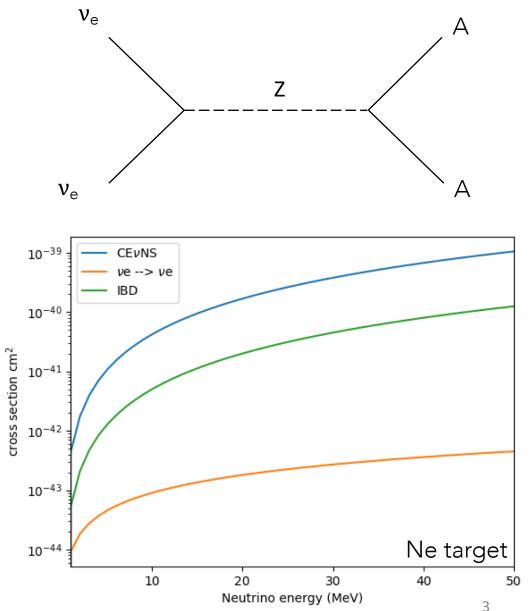


Coherent Elastic Neutrino-Nucleus Scattering

Marie Vidal on behalf of the NEWS-G collaboration

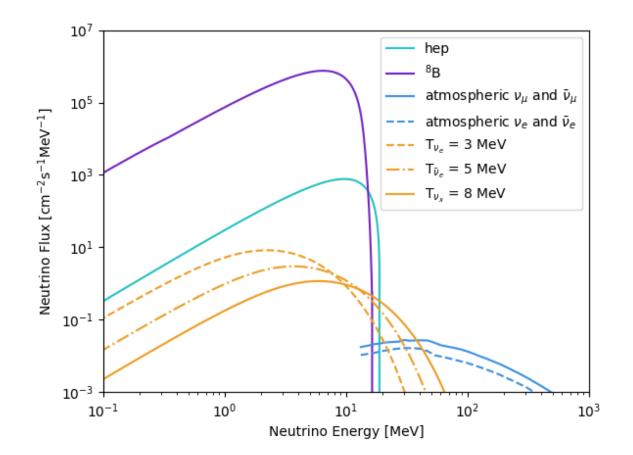
Queen's University

June 8th 2021

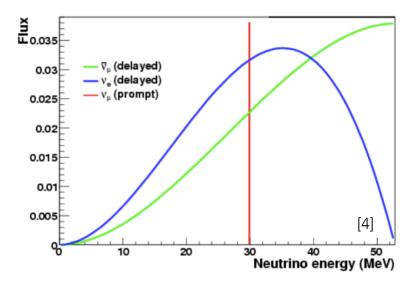

Outline

- Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
 - What is CEvNS?
 - Applications
 - State of the art
- \bullet CEvNS and the NEWS-G detectors
 - NEWS-G collaboration
 - Spherical proportional counters (SPCs)
 - $CE\nu NS$ program

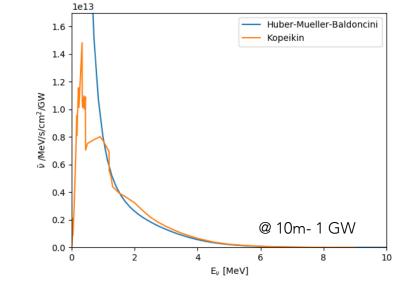
What is CEvNS?


- Predicted by Freedman in 1974 [1]
- Coherent elastic neutrino-nucleus scattering: neutral current
- Coherence = nucleons recoil in phase
 → low momentum transfer qR ≤ ~ 1 (q depends on target mass)
 - * $E_{\nu} \leq \sim 50$ MeV for medium A nuclei (Cs, Ar)
 - Low energy nuclear recoils → challenging to detect
- Large cross-section [2]: $\propto N^2$
- First detection by COHERENT in 2017 [3]

D. Z. Freedman, Phys. Rev. D 9, 1389– 1392 (1974)
 A. Drukier, L. Stodolsky, Phys. Rev. D 30, 2295–2309 (1984)
 D. Akimov et al. (COHERENT), Science 357, 1123 (2017)


Detectable natural sources

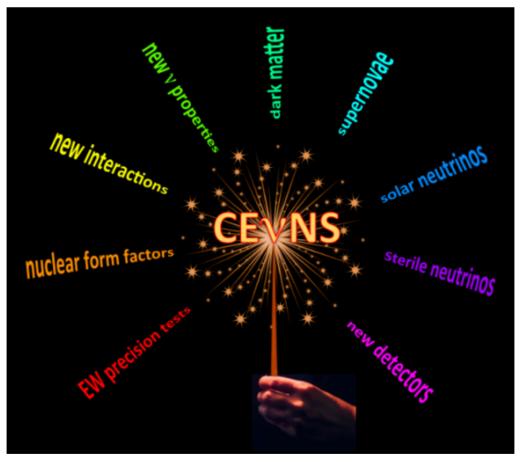
- Solar neutrinos from pp-chain
 - ⁸B and hep neutrinos: $\sim 10^6$ and 10^3 cm⁻² s⁻¹
 - Maximum $E_{\nu} \sim 20 \text{ MeV}$
 - Exp. signal: ~ 700 /t/year (^{8}B , >100 eV_{nr}) in Xe
- Atmospheric neutrinos
 - ~ 10° cm⁻² s⁻¹
 - E_{ν} < 50 MeV: a source of CEvNS
 - Exp. signal: < 10⁻²/t/year (>100 eV_{nr}) in Xe
- Supernovae neutrinos
 - Remnant of SN explosion: ~ 10¹ cm⁻² s⁻¹
 - Exp. signal: ~ 10^{-3} /t/year (>100 eV_{nr}) in Xe
- BG for WIMP searches


Detectable artificial sources

Accelerator

- multiple flavors of neutrinos
- pulsed source \rightarrow background rejection
- ν flux: ~ 10¹⁵ s⁻¹
- $E_{\nu} \in [0, 50]$ MeV (not fully coherent)
- $E_{nr} > 1 \text{ keV}_{nr}$

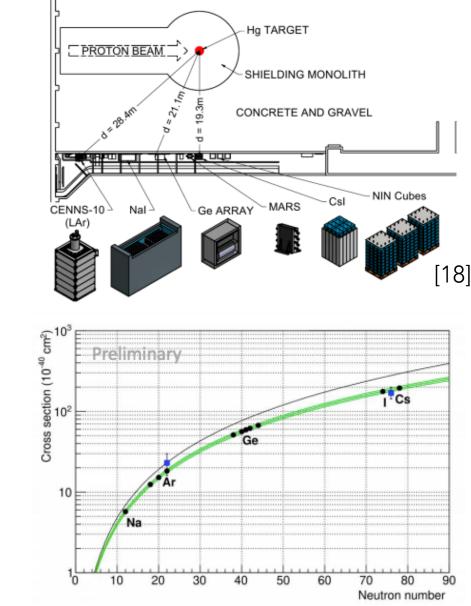
Nuclear reactor


- single flavor: $\nu_{\rm e}$
- continuous source: need to understand cycle for BG rejection
- ν flux: ~ 10²⁰ GW⁻¹ s⁻¹
- E_ν ∈ [0, 12] MeV
- $E_{nr} < \sim 1 \text{ keV}_{nr}$

Applications of $\text{CE}\nu\text{NS}$

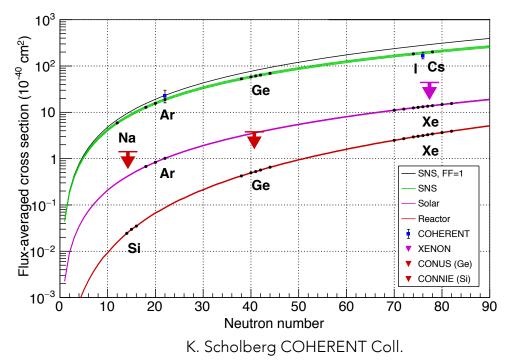
- Study of the neutrino flux from nuclear reactor
 - Application in monitoring reactor neutrino flux for nuclear non-proliferation [9]
 - Sterile neutrino search [10]
- Non-Standard Neutrino interactions [11]
 - Deviation from SM prediction
- Nuclear form factor measurements [12]
- Weak mixing angle precision measurements [13]
- Supernovae neutrinos search [1][14][15]
- Neutrino magnetic moment searches [16]

[9] Y. Kim, Nucl. Eng. Tech. 48, 285 (2016)
[10] B. Dutta, Y. Gao, A. Kubik, R. Mahapatra, N. Mirabolfathi, L.E. Strigari, and J.W. Walker, Phys. Rev. D 94.9 (2016)
[11] K. Scholberg, Phys. Rev. D., 73033005, (2006)
[12] P.S. Amanik and G.C. McLaughlin, J. Phys. G Nucl. Partic. 36.1 (2008)


E. Lisi: Neutrino 2018

[13] C.J. Horowitz, S.J. Pollock, P.A. Souder, and R. Michaels, Phys. Rev. C 63.2 (2001)
[14] D. Z. Freedman, Annu. Rev. Nucl. Sci. 27.1 (1977)
[15] C.J. Horowitz, K.J. Coakley, and D.N. McKinsey, Phys. Rev. D 68.2 (2003)
[16] J. Papavassiliou, J. Bernabéu, and M. Passera, Proceedings of the International Europhysics Conference on High Energy Physics, (July 21–27, 2005)

State of the art COHERENT

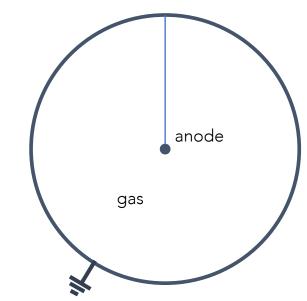

- Source: Spallation neutron source (SNS) @ Oak Ridge NL
- Multiple detector deployment: various technologies and targets (4)
- Csl[Na] scintillation detector
 - 1st detection of CE ν NS in 2017 with 6.7 σ C.L. [3]
 - Uncertainties dominated by quenching factor (25%) and ν flux (10%)
 - New analysis with more stat + precision measurement of QF (3.6%)
 - New C.L. of 11.6 σ (not published yet: communicated by the COHERENT collaboration)
- LAr scintillation detector
 - Detection with 3.5 σ C.L. [17]

State of the art

Sources	Target	Technology	Distance	E _{th} Q	=	Status
Reactor						
COvUS	Ge	HPGe	17m	$300 \text{eV}_{\text{ee}}$	Yes	1 st limits [19] 2019-2020 data-taking
CONNIE	Si	CCD arrays	30m	40 eV_{ee}	Yes	1⁵t limits [20] Upgrade: 7eV _{ee} E _{th}
Miner	Si & Ge	Cryogenic	2-10m	100eV _{nr}	Yes	Commissioning 2022
NU-CLEUS	$CaWO_4$	Cryogenic	72-100m	20eV	No	Physics run by 2022
Ricochet	Zn & Ge	Semi-conducto	or 8m	50eV	No	Physics run by 2023
Accelerate	or					
COHERENT	Ge LAr Nal	HPGe Scintillation Scintillation	~ 20m	1 keV _{nr} 20 keV _{nr} 13 keV _{nr}	Yes Yes	Commissioning 2021 Upgrade: 750 kg in 2022 Commissioning 2021
CCM	LAr	Scintillation	~ 20m	$20 \ \text{keV}_{nr}$	Yes	Physics run 2021-2022
Solar						
XENON1T	LXe	TPC		0.5 keV _{nr}	Yes	1 st limits [21]

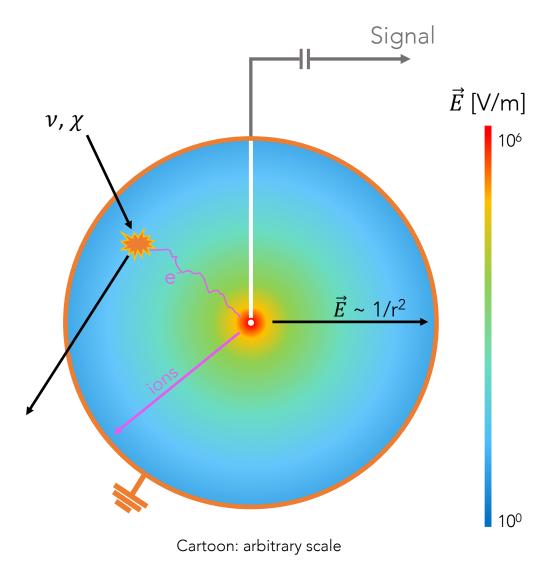
and many other experiments!

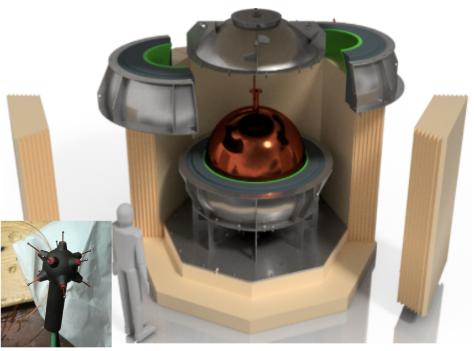
^[19] Phys. Rev. Lett. 126, 041804 (2021)
[20] Phys. Rev. D 100, 092005 (2019)
[21] E. Aprile et al. (XENON Collaboration)
Phys. Rev. Lett. 126, 091301



- Groups scientists from 10 different institutions.
- Main goal: search for low-mass dark matter (WIMPs)
 - direct detection: nuclear recoils
- Other applications:
 - Coherent elastic neutrino-nucleus scattering detection
 - Axions
 - Neutrinoless double beta decay
- Detector technology: spherical proportional counters

Spherical proportional counters

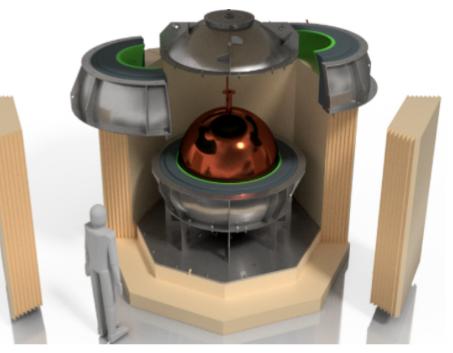

- Spherical metallic vessel filled with gas target + HV on central anode.
- SPC diameter: flexible
- SPC shell: stainless steel, copper, aluminum
- Gas: Neon, Argon, Helium, CH₄
- Large gain
- Low energy threshold, independent of the SPC size: single electron
- Discrimination surface/volume events


SPC: principle

- Primary ionization
 Mean energy necessary to generate 1 e⁻/ion pair
- Drift of primary e⁻ (pe) towards sensor Typical drift times: ~ 100 µs for 30cm Ø
- 3. Avalanche in the vicinity of the anode Generation of thousands of secondary e⁻/ion pairs
- 4. Signal formation
 Current induced by ions → sphere surface
- 5. Signal readout Induced current integrated by a preamplifier

NEWS-G and DM searches

- 1st DM data at the LSM
 - 60 cm Ø copper sphere (SEDINE)
 - Filled with 3.1 bar of neon (+0.7% CH₄)
 - Shielding: 30 cm PE, 15 cm Pb, 8 cm Cu
 - 9.6 kg days of exposure
 - Set leading low mass WIMP limit in the sub-GeV mass region (2018) [22]
- Next phase: NEWS-G at SNOLAB
 - New detector: 140 cm Ø low activity copper sphere (C10100) + electroplating of inner surface with 500 μ m of pure copper [23] + new sensor
 - New shielding: with layer of archeological lead


NEWS-G @ SNOLAB

NEWS-G and DM searches: SNOLAB

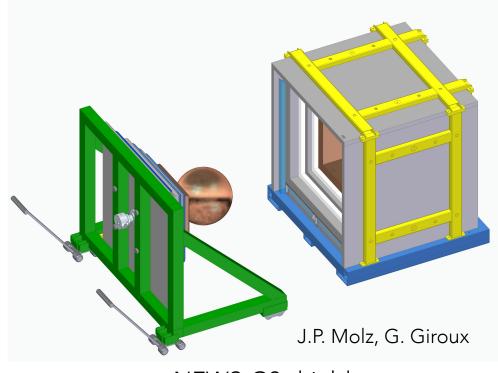
- Commissioning of the detector at the LSM in Summer 2019:
 - physics run with pure CH₄ gas mixture
 - analysis on-going: results to be published soon.
- Installation of the detector at SNOLAB in 2020.
- First physics run at SNOLAB Summer 2021!

See J-M. Coquillat's poster 2021-06-09

See A. Brossard's talk 2021-06-07

NEWS-G @ SNOLAB

• Other talks:


See Y. Deng's talk 2021-06-10 See P. O'Brien's talk 2021-06-10 See F. Andres Vazquez de Sola's talk 2021-06-07

$CE\nu NS \& NEWS-G$

- Interested in detecting CEvNS at nuclear reactor
 - High neutrino flux
- Reactor neutrinos up to ~12 MeV \rightarrow E_{nr} <~1keV_{nr}
- When we include the QF the detectable nuclear recoil energies are quenched.
- Need low energy threshold
 - SPCs are sensitive to single electron response
- Can try different targets with the same detector
- Status: study of the feasibility of detecting CE ν NS at a nuclear reactor using a SPC on-going.

Background

- NEWS-G is mainly a dark matter experiment → underground
- Need to understand surface background: 1st step NEWS-G3 shield @Queen's
 - cosmogenic activation + cosmic muon
 - compact shielding: Cu, Pb, PE
 - muon veto
 - commissioning planned for 2021 using a 60 cm Ø SPC
- Other background:
 - from material purity: study on going (Geant4 simulation)
 - from reactor: gamma and neutron

NEWS-G3 shield

Expected CEvNS signal

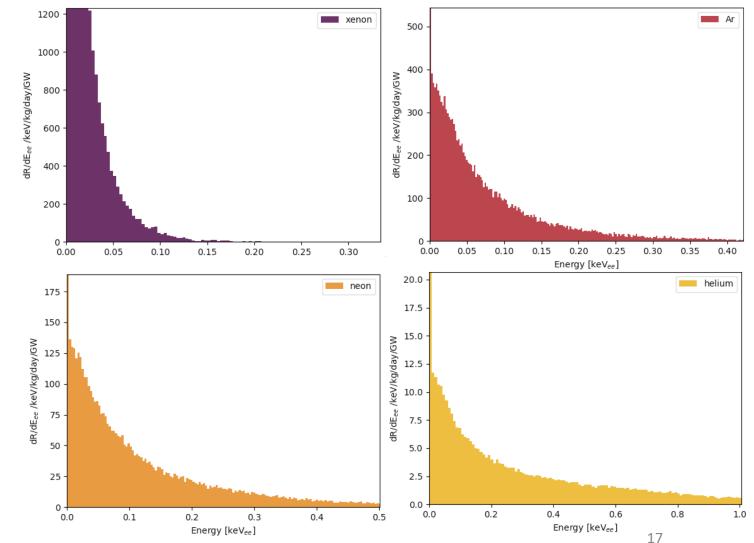
- Event rate: differential rate as a function of E_{nr}

$$\frac{dR}{dE_{nr}} = \mathcal{N} \int_{E_{\nu}^{min}} \frac{d\phi}{dE_{\nu}} \times \frac{d\sigma(E_{\nu}, E_{nr})}{dE_{nr}} dE_{\nu}$$

- The neutrino flux: Huber-Mueller-Baldoncini's flux [5],[6],[7]
- We consider 1GW thermal power
- The detector is 10m from the source
- We consider 1kg of target material

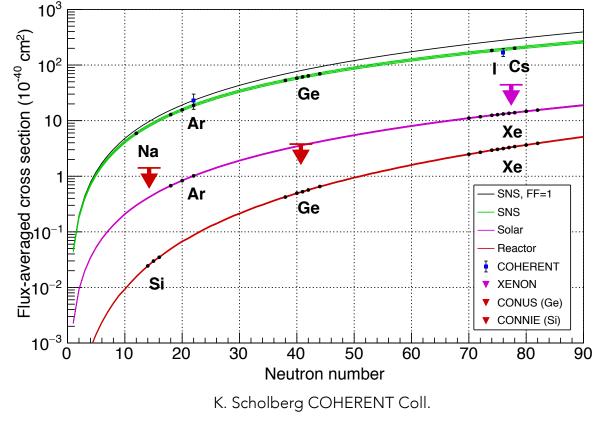
- Expected signal in detector:
 - Response of the detector: primary and secondary ionization statistical fluctuations.
 - Quenching factor: Lindhard model [24]
- 4 candidates: xenon, argon, neon and helium
- Considering a 60 cm Ø SPC:

		Pressure (bar)		
Temperature	Xenon	Argon	Neon	Helium
273 K	1.5	5	9.9	50
293 K	1.6	5.3	10.6	53


[24] J. Lindhard, V. Nielsen, M. Scharff and P.V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33 10 (1963)

Expected CEvNS signal

- Considering $E_{th} = 50 \text{ eV}_{ee}$
- Pressurized Water Reactors and Pressurized Heavy Water Reactors


Event rate:	PWR	PHWR
/kg/day/GW		(CANDU)
Xenon	13	17
Argon	16	20
Neon	11	13
Helium	4	4

- The knowledge of the QF is of the most importance in CE ν NS experiments.
 - 1st measurement of QF of neon gas (will be published soon) @TUNL

Conclusion

- First detections of CE ν NS by the COHERENT experiment with CsI and LAr detectors.
- International efforts to detect and use $\text{CE}\nu\text{NS}$ as a tool for rich physics program.
 - Collaborative CEvNS community: Magnificent CEvNS workshop every year
 - Benefit greatly from the work done in the dark matter field
 - Constrains set on CEvNS by 2 reactor experiments CONNIE and COvUS
 - 1^{st} constrain on solar ν : XENON1T
- NEWS-G and $CE\nu NS$
 - Study of the feasibility of an experiment using a SPC at a nuclear reactor is on-going.
 - Argon is the best candidate for a CE ν NS experiment.
 - CANDU reactors provide a higher event rate than PWR reactors.
 - Study of surface background: NEWS-G3 experiment commissioning planned for 2021.

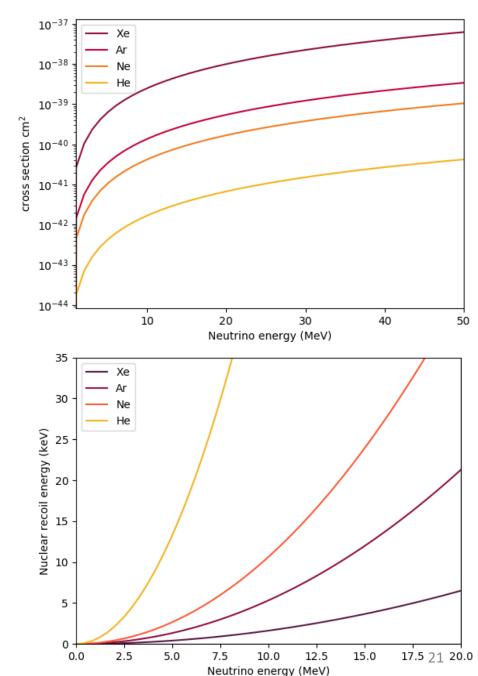
[19], [20], [21]

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

Thank you

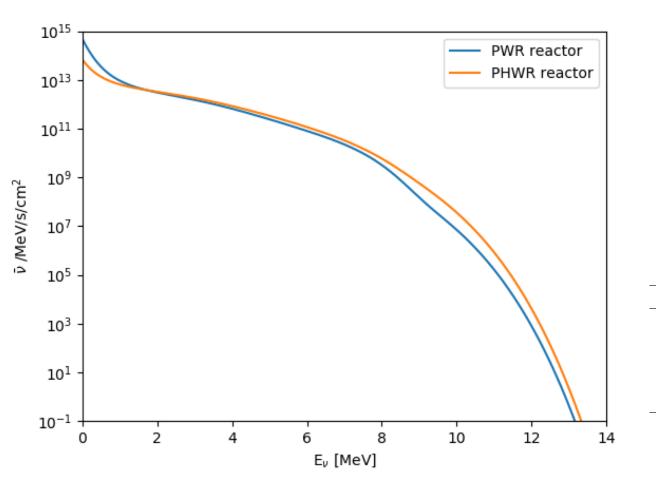
Questions?



Backup slides

Preliminary calculation

- From the cross sections comparison:
 - He: difficult
- Maximum nuclear recoil energy: $E_{max} = \frac{2E_{\nu}^2}{M}$
- Considering a $E_{\nu} = 6 \text{ MeV}$
 - Xe: $E_{nr,max} = 0.5 \text{ keV}_{nr} \rightarrow \text{difficult}$
 - Ar: $E_{nr,max} = 2 \text{ keV}_{nr}$
 - Ne: $E_{nr, max} = 3 \text{ keV}_{nr}$
 - He: $E_{nr,max} = 15 \text{ keV}_{nr}$
- Need to include QF

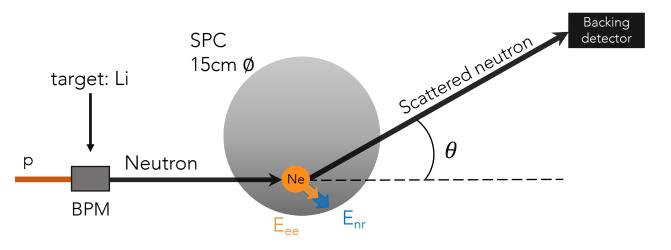


Event rates for natural sources

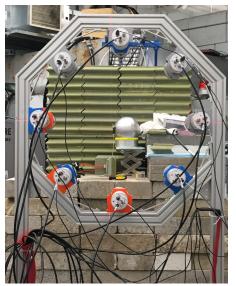
$CE\nu NS /t/year$	Xe	Ar	Ne	He
⁸ B	713	220.5	90.5	18.7
hep	2	0.63	0.25	5.1e-2
Atm. $\nu_{\mu}, \bar{\nu}_{\mu}$	2.e-2	6e-3	1.6e-3	7.9e-5
Atm. $\nu_e, \bar{\nu}_e$	1.e-3	4e-3	8.2e-4	4.1e-5
dsbn T_{ν_e}	2.3e-3	8e-4	3.6e-4	7.4e-5
dsbn $T_{\bar{\nu}_e}$	5e-3	1.5e-3	6.1e-4	1.1e-4
dsbn T_{ν_x}	7.6e-3	2.36 e-3	9.3 e-4	1.3e-4

Considering arbitrary energy threshold of 100 eV_{nr}.

Neutrino energy spectra comparison


$$S(E_{\bar{\nu}}) = P_{th}LF\sum_{i=1}^{4} \frac{p_i}{Q_i}\lambda(E_{\bar{\nu}})$$
$$\lambda(E_{\bar{\nu}}) = exp\Big(\sum_{p=1}^{6} a_p^i E_{\bar{\nu}}^{p-1}\Big)$$

	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	²³⁹ Pu	241 Pu
Q_i , E (MeV)/fission	202.36 ± 0.26	205.99 ± 0.52	211.12 ± 0.34	214.26 ± 0.33
$\bar{E}_{\bar{\nu}_e} (\mathrm{MeV})$	1.46	1.56	1.32	1.44
$\bar{\nu}_e$ / fission	5.58	6.69	5.09	5.89
$\mathbf{p}_i \; \mathbf{PWR}$	0.560	0.080	0.300	0.060
$p_i PHWR$	0.543	0.411	0.022	0.024


Expected background from material radioactivity

Cu SPC	dru γ < 1 keV / [Bq/kg]	Cu shield	druγ < 1 keV / [Bq/kg]	Pb shield	druγ < 1 keV / [Bq/kg]
Со60	4.48e2	U238	8.29e3	U238	1.05e1
Co57	7.35e2	Th232	3.32e3	Th232	7.9e1
Co58	4.53e2	Bi210	1.18e1	Bi210	e-3
Co56	8.16e2	Co60	2.41e3		
Mn54	2.96e2	Co57	94.4		
Pb 210 chain	4.1e1	Co58	1.65e3		
U238 chain	1.08e3	Co56	3.16e3		
Th232 chain	1.35e3	Mn54	3.16e3		

QF measurement @TUNL

Run	$E_{nr} \; [keV_{nr}]$	$\theta [^{o}]$
8	6.8	29.02
7	2.93	18.84
14	2.02	15.63
9	1.7	14.33
10	1.3	12.48
14	1.03	11.13
11	0.74	9.4
14	0.34	6.33

Method

- From kinematics: can calculate E_{nr} as a function of the scattering angle (θ_s) and the neutron energy (E_n).
- θ_s provided by backing detectors (BDs) configuration
- Calculate: $QF(E_{nr}) = E_{ee}/E_{nr}$

Experiment

- 15 cm SPC
- Gas: Neon + CH₄ (97:3) @ 2 bar
- Pulsed beam: $E_n = 545 \pm 20 \text{ keV}$
- 8 energy points: 0.34 to 6.8 keV_{nr} (see table)
- DAQ triggered on BDs
- Beam Pick-off Monitor (BPM): TOF neutrons
- Energy calibration: ⁵⁵Fe source