Highlights from the ATLAS Experiment

Tony Kwan McGill University

on behalf of ATLAS Canada

CAP 2021

June 7, 2021

ATLAS Canada

ALBERTA

University of Victoria

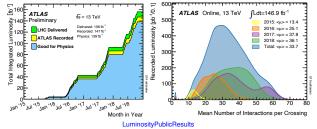
- Founded in 1992.
- 10 institutions.

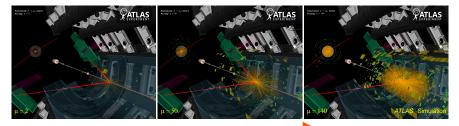
About 40 faculty members, 35 postdocs, and 80 graduate students, along with research and technical staff.

SFU SIMON FRASER

Tony Kwan (McGill University)

CAP 2021

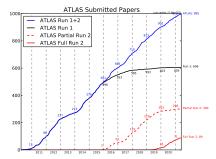

YOR K


NIVERSITÉ

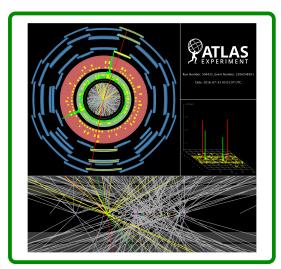
RSI

ATLAS Run-2

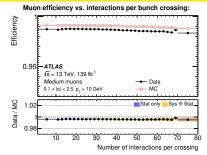
- Run-1: 2011-2012; √s = 7-8 TeV; ∫ L = 25 fb⁻¹.
- **Run-2:** 2015-2018; √s = 13 TeV; ∫ L = 139 fb⁻¹.
- ► In 2017, reached and ran at twice the nominal luminosity: $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.


Increasing pileup

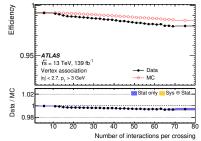
Contents

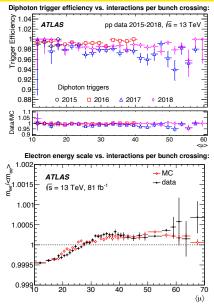

Recently published measurements and searches, and upgrade activities:

- Detector Performance
- Higgs Measurements:
 - Evidence of $H \rightarrow \ell \ell \gamma$
- Precision Standard Model Measurements:
 - Test of Lepton Universality
 - Observation of $\gamma\gamma \rightarrow WW$
- Beyond the Standard Model:
 - Searches using Monojet Events
- Detector Upgrades



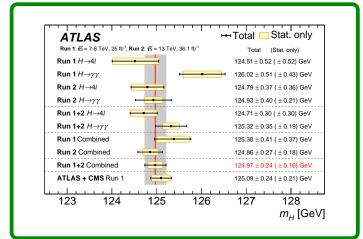
Detector Performance




Detector Performance

[1, 2, 3]

Vertex association efficiency vs. interactions per bunch crossing:



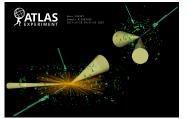
Tony Kwan (McGill University)

June 7, 2021 6 / 24

Higgs Measurements



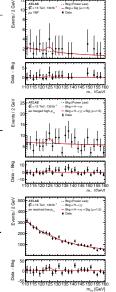
HiggsSummaryPlots

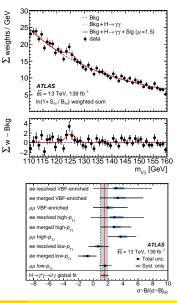

Evidence of $H ightarrow \ell \ell \gamma$ (I)

- First evidence for the decay of the Higgs boson into the rare final state of dilepton pair and a photon.
- $\int \mathcal{L} = 139 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}.$
- ► Low mass dileptons, m_{ℓℓ} < 30 GeV.</p>
- Photon $p_T > 20$ GeV.

- Signal regions:
 - VBF: Best expected signal-to-background ratio.
- ► High-p_{Tt}: More events.
- Low-p_{Tt}: All others events.

- ▶ $p_{Tt} \equiv |\vec{p}_T^{\ell\ell\gamma} \times \hat{t}|$, where $\hat{t} = (\vec{p}_T^{\ell\ell} \vec{p}_T^{\gamma})/|\vec{p}_T^{\ell\ell} \vec{p}_T^{\gamma}|$, strongly correlated with $\vec{p}_T^{\ell\ell\gamma}$ but better experimental resolution.
- Use of both resolved (2 tracks) and merged (single track) ee pairs.

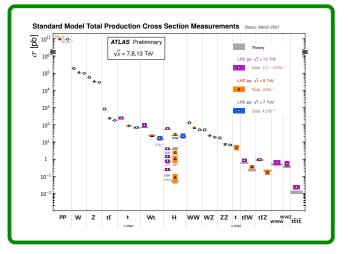




Evidence $H \rightarrow \ell \ell \gamma$ (II)

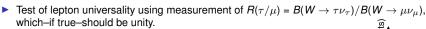
Category	Events
ee resolved VBF-enriched	10
ee merged VBF-enriched	15
$\mu\mu$ VBF-enriched	33
ee resolved high-pTt	86
ee merged high-p _{Tt}	162
$\mu\mu$ high- $p_{\mathrm{T}t}$	210
<i>ee</i> resolved low- p_{Tt}	3713
<i>ee</i> merged low- p_{Tt}	5103
$\mu\mu \operatorname{low-} p_{\mathrm{T}t}$	9813

- Significance of 3.2σ over background-only hypothesis, compared to an expected significance of 2.1σ .
- $\sigma \times B = 8.7^{+2.8}_{-2.7}$ fb.
- Signal strength $\mu \equiv$ $\sigma \times B/(\sigma \times B)_{\rm SM} = 1.5 \pm 0.5.$
- First evidence of $H \rightarrow \ell \ell \gamma$, an important step towards probing Higgs couplings in this rare decay channel.

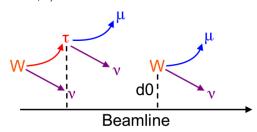


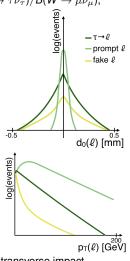
Tony Kwan (McGill University)

CAP 2021


[4]

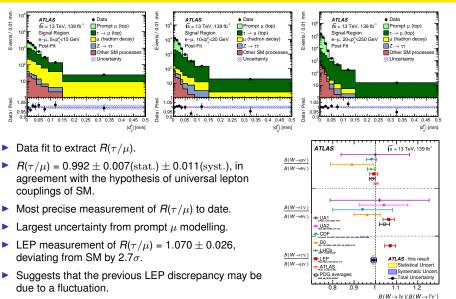
Precision Standard Model Measurements



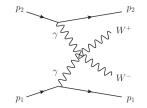

SMSummaryPlots

Test of Lepton Universality (I)

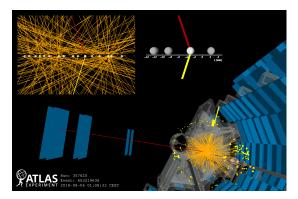
- $\int \mathcal{L} = 139 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}.$
- ► Relies on being able to distinguish prompt $W \rightarrow \mu\nu_{\mu}$ from $W \rightarrow \tau\nu_{\tau} \rightarrow \mu\nu_{\mu}\nu_{\tau}\nu_{\tau}$.

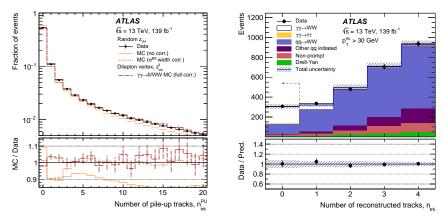


- Uses $t\bar{t}$ semileptonic decays for a sample of W bosons.
- Achievable by utilizing the precise reconstruction of muon tracks obtainable by the ATLAS experiment
- Distinguished using the lifetime of the *τ*-lepton, through the muon transverse impact parameter, and differences in the muon transverse momentum spectra.


[5]

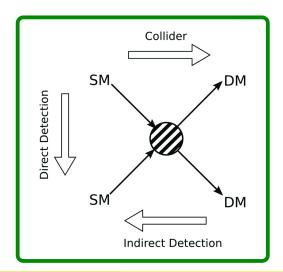
Test of Lepton Universality (II)


Observation of $\gamma\gamma ightarrow WW$ (I)

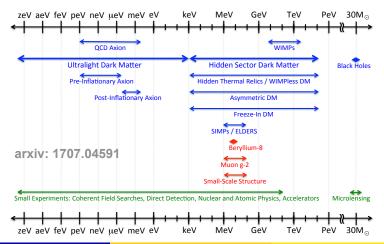


- Hundreds of times less likely than WW production from hard scatter.
- Requirement of no additional charged particles from vertex.
- The pileup (20-60 pp interactions per bunch crossing) adds to challenge of analysis.
- Simulated beam spot corrected using measured value from LHC.

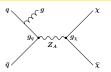
- Measurement of $\gamma \gamma \rightarrow WW \rightarrow e \nu_e \mu \nu_\mu$.
- $\int \mathcal{L} = 139 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}.$
- Test of SU(2)×U(1) gauge structure of SM and sensitive to anomalous gauge-boson interactions.



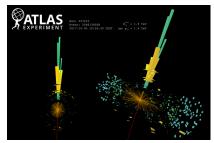
Observation of $\gamma\gamma \rightarrow WW$ (II)


- First observation at LHC, with 8.4 σ , well above the 5 σ required for discovery.
- $\gamma \gamma \rightarrow WW \rightarrow e \nu_e \mu \nu_\mu$: $\sigma_{meas} = 3.13 \pm \pm 0.31 (\text{stat.}) \pm 0.28 (\text{syst.})$ fb.
- One or 2 events in the 30 trillion pp interactions in a typical daily run of the LHC in 2018.

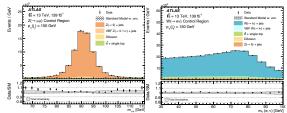
Searches for New Physics


Collider Searches for Dark Matter

- Searches for dark matter (DM) large focus of Run-2 for ATLAS.
- Collider searches (SM \rightarrow DM) complementary to direct and indirect searches.

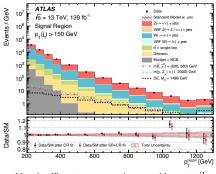


Dark Sector Candidates, Anomalies, and Search Techniques


Searches using Monojet Events (I)

- Premier search channel, looking for a visible jet recoiling off an "invisible" new particle.
- Versatile, can be used to search for WIMPs (DM candidates), SUSY, dark energy, and more.
- Major challenge to accurately and precisely estimate SM background.
 - Dominant background is $Z \rightarrow \nu\nu$ + jets.
 - Backgrounds estimated using simulation.
 - Constrained using data-driven techniques, i.e. simultaneous binned likelihood fits to control regions.

(Highest transverse momentum monojet, $p_T = 1.9$ TeV, ever recorded by ATLAS.)



region ranges from about 1% – 4% in range g 200 GeV – 1.2 TeV.

Searches using Monojet Events (II)

 Leading experimental uncertainties: electron, muon, and jet identification and reconstruction efficiencies.

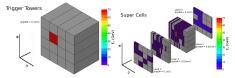
Total background uncertainty in the signal

 No significant excess observed in p_T^{recoil} spectrum.

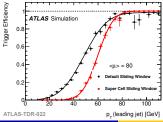
- Exclude (WIMP) dark matter masses up to about 585 GeV and interaction axial-vector mediators up to 2.1 TeV, both at the 95% confidence level.
- Most stringent dark matter limits in a collider experiment to-date.

Detector Upgrades

Detector Upgrades



- During Long Shutdown 2 (2019–early-2022), major upgrades to ATLAS detector being done in preparation for the HL-LHC (Phase-1 Upgrades).
- Looking ahead, during Long Shutdown 3 (2025–2027), another set of important upgrades will be made (Phase-2 Upgrades).


	Phase-1	Phase-2
Tracking	-	New all-silicon inner detector 🛛 🔶 🌞
Timing	-	New high-granularity timing detector
Calorimeter	New L1 LAr electronics 🛛 🌞	Continuous readout of LAr and Tile 🛛 🌞
Muon	New Small Wheels 🛛 🌞	New muon chambers in barrel, continuous readout
TDAQ	New trigger hardware	New trigger hardware

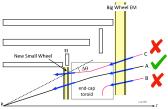
Phase-1 Calorimeter Upgrade

 Upgrade to L1 LAr electronics allows implementation of supercells.

Improvement of trigger energy resolution and object identification efficiency for electrons, photons, *τ* leptons, jets, and missing transverse momentum.

Canadian contributions:

- Designed and built new front-end-crate base-planes (multilayer circuit boards that can accommodate the routing of the new trigger signals).
 - Operations at TRIUMF and UVic.


- Also financial contributions to the new trigger digitizer boards.
- Installation of the new electronics started at the beginning of Long Shutdown 2 and is now complete.
- ATLAS-Canada members are playing key roles in the commissioning.

Tony Kwan (McGill University)

Phase-1 Muon Upgrade

- Replacement of ATLAS small wheels with New Small Wheels (NSW).
- Improve online fakes rejection rate (by ×7) and offline tracking at endcaps.

Canadian contributions:

- Construction of 54 (25%) muon gas chambers of the total 216 needed for the NSW project.
 - Operations at TRIUMF, Carleton, and McGill.
- Major contributions to assembly, integration, and commissioning activities at CERN.
- Leading role in software and performance.

- NSW-A will be ready to be installed in pit in late June, while NSW-C is looking promising.
- More details on the Canadian contribution to be given at upcoming CAP talk.

Conclusions

- Many measurements and searches were conducted with ATLAS detector and the Run-2 LHC dataset.
- Despite the increase in complexity in the collision environment, the performance of the detector has kept pace and remained good.
- Of the nearly 100 published full Run-2 results, 4 were shown in this highlights talk:
 - Evidence of $H \rightarrow \ell \ell \gamma$;
 - Test of Lepton Universality;
 - Observation of $\gamma\gamma \rightarrow WW$;
 - Searches using Monojet Events.
- Phase-1 upgrades to the ATLAS detector are well underway in preparation for a successful Run-3 and beyond.

References

[1]: "Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s} = 13 TeV", Accepted by: Eur. Phys. J. C.

[2]: "Performance of electron and photon triggers in ATLAS during LHC Run 2", Eur. Phys. J. C 80 (2020) 47.

[3]: "Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data", JINST 14 (2019) P12006.

[4]: "Evidence for Higgs boson decays to a low-mass dilepton system and a photon in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", Accepted by: Phys. Lett. B.

[5]: "Test of the universality of τ and μ lepton couplings in *W*-boson decays from $t\bar{t}$ events with the ATLAS detector", Accepted by: Nature Physics.

[6]: "Observation of photon-induced W^+W^- production in *pp* collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector", Phys. Lett. B. 816 (2021) 136190.

[7]: "Search for new phenomena in events with an energetic jet and missing transverse momentum in *pp* collisions at \sqrt{s} = 13 TeV with the ATLAS detector", Accepted by: Physical Review D.

[8]: "ATLAS Liquid Argon Calorimeter Phase-I Upgrade Technical Design Report", ATLAS-TDR-022-2013.

[9]: "New Small Wheel Technical Design Report", ATLAS-TDR-020-2013.