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ATLAS Canada

I Founded in
1992.

I 10 institutions.
I About 40

faculty
members, 35
postdocs, and
80 graduate
students,
along with
research and
technical staff.
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ATLAS Run-2

I Run-1: 2011-2012;
√

s =
7-8 TeV;

∫
L = 25 fb−1.

I Run-2: 2015-2018;
√

s =
13 TeV;

∫
L = 139 fb−1.

I In 2017, reached and ran
at twice the nominal
luminosity:
L = 2× 1034 cm−2s−1.
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Detector Performance

Tony Kwan (McGill University) CAP 2021 June 7, 2021 5 / 24



Detector Performance [1, 2, 3]
Muon efficiency vs. interactions per bunch crossing:
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Vertex association efficiency vs. interactions per bunch crossing:
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Diphoton trigger efficiency vs. interactions per bunch crossing:
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https://arxiv.org/pdf/2012.00578.pdf
https://arxiv.org/pdf/1909.00761.pdf
https://arxiv.org/pdf/1908.00005.pdf


Higgs Measurements

123 124 125 126 127 128
 [GeV]Hm

Total Stat. onlyATLAS
        Total      (Stat. only)

 Run 1ATLAS + CMS  0.21) GeV± 0.24 ( ±125.09 

 CombinedRun 1+2  0.16) GeV± 0.24 ( ±124.97 

 CombinedRun 2  0.18) GeV± 0.27 ( ±124.86 

 CombinedRun 1  0.37) GeV± 0.41 ( ±125.38 

γγ→H Run 1+2  0.19) GeV± 0.35 ( ±125.32 

l4→H Run 1+2  0.30) GeV± 0.30 ( ±124.71 

γγ→H Run 2  0.21) GeV± 0.40 ( ±124.93 

l4→H Run 2  0.36) GeV± 0.37 ( ±124.79 

γγ→H Run 1  0.43) GeV± 0.51 ( ±126.02 

l4→H Run 1  0.52) GeV± 0.52 ( ±124.51 

-1 = 13 TeV, 36.1 fbs: Run 2, -1 = 7-8 TeV, 25 fbs: Run 1

HiggsSummaryPlots
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/HIGGS


Evidence of H → ``γ (I) [4]
I First evidence for the decay of

the Higgs boson into the rare
final state of dilepton pair and a
photon.

I
∫
L = 139 fb−1,

√
s = 13 TeV.

I Low mass dileptons,
m`` < 30 GeV.

I Photon pT > 20 GeV.

Signal regions:
I VBF: Best expected

signal-to-background
ratio.

I High-pTt : More events.
I Low-pTt : All others

events.
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γ∗/Z

H
W

γ
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γ∗/Z

H

W

γ

γ∗/Z
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γ
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I pTt ≡ |~p
``γ
T × t̂ |, where t̂ = (~p``T − ~p

γ
T )/|~p``T −

~pγT |, strongly correlated with ~p``γT but better
experimental resolution.

I Use of both resolved (2 tracks) and merged (single track) ee pairs.

Tony Kwan (McGill University) CAP 2021 June 7, 2021 8 / 24

https://arxiv.org/pdf/2103.10322.pdf


Evidence H → ``γ (II) [4]
Category Events S90 BN

90 BH!�� f90 [%] Z90

ee resolved VBF-enriched 10 0.4 1.6 0.009 20 0.3
ee merged VBF-enriched 15 0.8 2.0 0.07 27 0.5
µµ VBF-enriched 33 1.3 5.9 � 18 0.5
ee resolved high-pTt 86 1.1 12 0.02 9 0.3
ee merged high-pTt 162 2.5 18 0.2 12 0.6
µµ high-pTt 210 4.0 34 � 11 0.7
ee resolved low-pTt 3713 22 729 0.5 2.9 0.8
ee merged low-pTt 5103 29 942 2 3.0 1.0
µµ low-pTt 9813 61 1750 � 3.4 1.4

I Significance of 3.2σ over
background-only hypothesis,
compared to an expected
significance of 2.1σ.

I σ × B = 8.7+2.8
–2.7 fb.

I Signal strength µ ≡
σ× B/(σ× B)SM = 1.5± 0.5.

I First evidence of H → ``γ,
an important step towards
probing Higgs couplings in
this rare decay channel.
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Precision Standard Model Measurements
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-005


Test of Lepton Universality (I) [5]
I Test of lepton universality using measurement of R(τ/µ) = B(W → τντ )/B(W → µνµ),

which–if true–should be unity.

I
∫
L = 139 fb−1,

√
s = 13 TeV.

I Relies on being able to distinguish prompt W → µνµ from
W → τντ → µνµντντ .

I Uses t t̄ semileptonic decays for a sample of W bosons.
I Achievable by utilizing the precise reconstruction of muon

tracks obtainable by the ATLAS experiment
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Figure 2: Schematic representation of the d0 and pT distributions for the three dominant contributions in the analysis.
.

Figure 3 shows the d0 distributions in the two channels to give an idea of the resolution, di�erence in254

shapes and the major backgrounds. Figure 4 shows the same d0 distributions but grouped by a more general255

truth-level categorisation of all leptons.256

3 Data and Simulation Samples257

The analysis is performed on the data sample of pp collisions at
p

s = 13 TeV collected by ATLAS in258

2015–2018. Events are required to fulfill the standard data quality requirements. The corresponding GRL259

files and the integrated luminosity of the selected samples are given in Table 2.260

Table 2: The GRL files and the integrated luminosity used in the analysis.
Year GRL file

Ø
L dt (fb�1)

2015 data15_13TeV/20170619/physics_25ns_21.0.19.xml 3.2
2016 data16_13TeV/20180129/physics_25ns_21.0.19.xml 33.0
2017 data17_13TeV/20180619/physics_25ns_Triggerno17e33prim.xml 44.3
2018 data18_13TeV/20190219/physics_25ns_Triggerno17e33prim.xml 58.5

Events are selected using the TOPQ1 derivation [29] of the main Physics stream, which contains both261

electron- and muon-triggered events. This derivation includes all events with at least one lepton with262

pT > 20 GeV. We use the data samples produced with p-tag p3794 for all years of data taking.263

Monte Carlo simulated event samples were used to develop the analysis, to compare to data and to evaluate264

the signal and background e�ciencies and uncertainties. Standard ATLAS top group MC16a, MC16d265

and MC16e samples were used. Their list is given in Appendix A. The extended information on all MC266

samples used can be found in Ref. [30]. The main signal (both tt̄ and Wt) and background samples267
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Figure 2: Schematic representation of the d0 and pT distributions for the three dominant contributions in the analysis.
.

Figure 3 shows the d0 distributions in the two channels to give an idea of the resolution, di�erence in254

shapes and the major backgrounds. Figure 4 shows the same d0 distributions but grouped by a more general255

truth-level categorisation of all leptons.256

3 Data and Simulation Samples257

The analysis is performed on the data sample of pp collisions at
p

s = 13 TeV collected by ATLAS in258

2015–2018. Events are required to fulfill the standard data quality requirements. The corresponding GRL259

files and the integrated luminosity of the selected samples are given in Table 2.260

Table 2: The GRL files and the integrated luminosity used in the analysis.
Year GRL file

Ø
L dt (fb�1)

2015 data15_13TeV/20170619/physics_25ns_21.0.19.xml 3.2
2016 data16_13TeV/20180129/physics_25ns_21.0.19.xml 33.0
2017 data17_13TeV/20180619/physics_25ns_Triggerno17e33prim.xml 44.3
2018 data18_13TeV/20190219/physics_25ns_Triggerno17e33prim.xml 58.5

Events are selected using the TOPQ1 derivation [29] of the main Physics stream, which contains both261

electron- and muon-triggered events. This derivation includes all events with at least one lepton with262

pT > 20 GeV. We use the data samples produced with p-tag p3794 for all years of data taking.263

Monte Carlo simulated event samples were used to develop the analysis, to compare to data and to evaluate264

the signal and background e�ciencies and uncertainties. Standard ATLAS top group MC16a, MC16d265

and MC16e samples were used. Their list is given in Appendix A. The extended information on all MC266

samples used can be found in Ref. [30]. The main signal (both tt̄ and Wt) and background samples267

7th May 2020 – 21:38 10

I Distinguished using the lifetime of the τ -lepton, through the muon transverse impact
parameter, and differences in the muon transverse momentum spectra.
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https://arxiv.org/pdf/2007.14040.pdf


Test of Lepton Universality (II) [5]
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I Data fit to extract R(τ/µ).
I R(τ/µ) = 0.992± 0.007(stat.)± 0.011(syst.), in

agreement with the hypothesis of universal lepton
couplings of SM.

I Most precise measurement of R(τ/µ) to date.
I Largest uncertainty from prompt µ modelling.
I LEP measurement of R(τ/µ) = 1.070± 0.026,

deviating from SM by 2.7σ.
I Suggests that the previous LEP discrepancy may be

due to a fluctuation. 0.8 0.9 1 1.1 1.2
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https://arxiv.org/pdf/2007.14040.pdf


Observation of γγ → WW (I) [6]

I Hundreds of times less likely
than WW production from hard
scatter.

I Requirement of no additional
charged particles from vertex.

I The pileup (20-60 pp
interactions per bunch
crossing) adds to challenge of
analysis.

I Simulated beam spot
corrected using measured
value from LHC.

I Measurement of γγ → WW → eνeµνµ.

I
∫
L = 139 fb−1,

√
s = 13 TeV.

I Test of SU(2)×U(1) gauge structure of SM and sensitive
to anomalous gauge-boson interactions.

Tony Kwan (McGill University) CAP 2021 June 7, 2021 13 / 24

https://arxiv.org/pdf/2010.04019.pdf


Observation of γγ → WW (II) [6]
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I First observation at LHC, with 8.4σ, well above the 5σ required for discovery.
I γγ → WW → eνeµνµ: σmeas = 3.13±±0.31(stat.)± 0.28(syst.) fb.
I One or 2 events in the 30 trillion pp interactions in a typical daily run of the LHC in 2018.
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Searches for New Physics
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Collider Searches for Dark Matter
I Searches for dark matter (DM) large focus of Run-2 for ATLAS.
I Collider searches (SM→ DM) complementary to direct and indirect searches.

SIMPs	/	ELDERS	
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Dark	Sector	Candidates,	Anomalies,	and	Search	Techniques	
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Beryllium-8	

Black	Holes	

Hidden	Thermal	Relics	/	WIMPless	DM	

Asymmetric	DM	

Freeze-In	DM	

Pre-InflaIonary	Axion	

Post-InflaIonary	Axion	

FIG. 1: Mass ranges for dark matter and mediator particle candidates, experimental anomalies,

and search techniques described in this document. All mass ranges are merely representative; for

details, see the text. The QCD axion mass upper bound is set by supernova constraints, and

may be significantly raised by astrophysical uncertainties. Axion-like dark matter may also have

lower masses than depicted. Ultralight Dark Matter and Hidden Sector Dark Matter are broad

frameworks. Mass ranges corresponding to various production mechanisms within each framework

are shown and are discussed in Sec. II. The Beryllium-8, muon (g � 2), and small-scale structure

anomalies are described in VII. The search techniques of Coherent Field Searches, Direct Detection,

and Accelerators are described in Secs. V, IV, and VI, respectively, and Nuclear and Atomic Physics

and Microlensing searches are described in Sec. VII.

II. SCIENCE CASE FOR A PROGRAM OF SMALL EXPERIMENTS

Given the wide range of possible dark matter candidates, it is useful to focus the search
for dark matter by putting it in the context of what is known about our cosmological history
and the interactions of the Standard Model, by posing questions like: What is the (particle
physics) origin of the dark matter particles’ mass? What is the (cosmological) origin of
the abundance of dark matter seen today? How do dark matter particles interact, both
with one another and with the constituents of familiar matter? And what other observable
consequences might we expect from this physics, in addition to the existence of dark matter?
Might existing observations or theoretical puzzles be closely tied to the physics of dark
matter? These questions have many possible answers — indeed, this is one reason why

13

arxiv: 1707.04591
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Searches using Monojet Events (I) [7]
q g

q̄

gq
ZA

χ

χ̄

gχ

I Premier search channel, looking
for a visible jet recoiling off an
“invisible” new particle.

I Versatile, can be used to search
for WIMPs (DM candidates),
SUSY, dark energy, and more.

I Major challenge to accurately and
precisely estimate SM
background.
• Dominant background is

Z → νν + jets.
• Backgrounds estimated using

simulation.
• Constrained using data-driven

techniques, i.e. simultaneous
binned likelihood fits to control
regions.

(Highest transverse momentum monojet, pT = 1.9 TeV,
ever recorded by ATLAS.)
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Searches using Monojet Events (II) [7]
I Total background uncertainty in the signal

region ranges from about 1% – 4% in range
200 GeV – 1.2 TeV.

I Leading experimental uncertainties:
electron, muon, and jet identification and
reconstruction efficiencies.
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I No significant excess observed in precoil
T

spectrum.
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I Exclude (WIMP) dark matter masses up to
about 585 GeV and interaction axial-vector
mediators up to 2.1 TeV, both at the 95%
confidence level.

I Most stringent dark matter limits in a
collider experiment to-date.
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I During Long Shutdown 2 (2019–early-2022), major upgrades to ATLAS detector being done
in preparation for the HL-LHC (Phase-1 Upgrades).

I Looking ahead, during Long Shutdown 3 (2025–2027), another set of important upgrades
will be made (Phase-2 Upgrades).

Detector Upgrades (I)
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I During Long Shutdown 2 (2019-to-early-2022), major upgrades to ATLAS detector being
done in preparation for the HL-LHC (Phase-1 Upgrades).

I Looking ahead, during Long Shutdown 3 (2025-2027), another set of important upgrades
will be made (Phase-2 Upgrades).

Phase-1 Phase-2

Tracking – New all-silicon inner detector

Timing – New high-granularity timing detector

Calorimeter New L1 LAr electronics Continuous readout of LAr and Tile

Muon New Small Wheels New muon chambers in barrel, continuous readout

TDAQ New trigger hardware New trigger hardware

Tony Kwan (McGill University) CAP 2021 June 7, 2021 10 / 12Tony Kwan (McGill University) CAP 2021 June 7, 2021 20 / 24



Phase-1 Calorimeter Upgrade [8]
I Upgrade to L1 LAr electronics allows

implementation of supercells.Technical Design Report
December 2, 2013

ATLAS
Liquid Argon Calorimeter Phase-I Upgrade

(a)

(b)

Figure 1. An electron (with 70 GeV of transverse energy) as seen by the existing Level-1 Calorimeter trigger
electronics (a) and by the proposed upgraded trigger electronics (b).

• Long Shutdown 3 (LS3): 2022�2023. The LHC will undergo a major upgrade of its compo-
nents (e.g. low-� quadrupole triplets, crab cavities at the interaction regions).

• High-Luminosity LHC (HL-LHC): 2024� 2030 and beyond. The LHC complex will deliver
levelled instantaneous luminosity L = 5⇥1034 cm�2 s�1 (Phase-II operation) and an annual
integrated luminosity of 250 fb�1, i.e. up to 3ab�1 after 12 years of running.

1.2 ATLAS upgrade plans up to 2030 and beyond

To optimize the physics reach at each phase of the accelerator complex upgrades, ATLAS has
devised a staged program in three phases, corresponding to the three long shutdowns.

The upgrades during LS1 consist of consolidation of the existing sub-detectors including the
installation of a fourth (inner) layer for the pixel detector requiring a new, smaller radius central (Be)
beam pipe, additional chambers in the muon spectrometer to improve the geometrical coverage,
and more neutron shielding in the muon endcap toroids.

After LS2, instantaneous luminosities of L ⇠ 2.2⇥1034 cm�2 s�1 are expected with 25 ns bunch
spacing and the average number of interactions per crossing will be hµi ⇠ 60. If ATLAS is to exploit
this increase in luminosity and maintain a low-pT lepton threshold (⇠ 25 GeV) in the Level-1 trigger

2 Chapter 1: Overview of the Phase-I LAr upgrade project
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1.2 ATLAS upgrade plans up to 2030 and beyond

To optimize the physics reach at each phase of the accelerator complex upgrades, ATLAS has
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The upgrades during LS1 consist of consolidation of the existing sub-detectors including the
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and more neutron shielding in the muon endcap toroids.
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2 Chapter 1: Overview of the Phase-I LAr upgrade project

I Improvement of trigger energy resolution
and object identification efficiency for
electrons, photons, τ leptons, jets, and
missing transverse momentum.

Technical Design Report
December 2, 2013

ATLAS
Liquid Argon Calorimeter Phase-I Upgrade
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(b)

Figure 14. The trigger efficiency as a function of the highest pT offline jet for hµi = 20 (a) and hµi = 80 (b)
in simulated QCD dijet events. The performance of the default sliding window algorithm (black points) is
compared to that of the sliding window algorithm based on Super Cells (red points) for jets within |⌘| < 2.5.

algorithm, that has been used to reconstruct heavy ion collision events in the PHENIX experiment at
RHIC [16]. As shown in Fig. 15, the present Level-1 jet trigger system based on the sliding window
algorithm displays an inefficiency for multijet triggers at the plateau region, mainly caused by a
limited capability to separate jets produced in close proximity to one another. This effect is especially
illustrated in Z0 ! tt̄, where the top quarks are Lorentz-boosted and their decay products are close
together. The default algorithm is compared to the anti-kt algorithm with a distance parameter of R =
0.4 that is used in ATLAS for offline jet reconstruction. Results are also shown for a Gaussian filter
algorithm where the value of the standard deviation (�= 0.1) is chosen to optimize the jet separation.
In contrast to the default sliding window algorithm, the jets reconstructed with the Gaussian filter
reach full efficiency in the plateau region and therefore will help to recover current inefficiencies of
multijet triggers. Such an algorithm can only be applied to a Level-1 jet trigger based on Super Cells.
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Figure 15. The trigger efficiency as a function of the fourth-highest pT offline jet for hµi = 80 in simulated
Z0 ! tt̄ events. The Level-1 jet thresholds require four jets with pT > 20 GeV. The default sliding window
algorithm (red points) is compared to a Gaussian filter algorithm (purple points) and the anti-kt algorithm
(green points) for jets within |⌘| < 2.5.

20 Chapter 2: Physics Requirements and Expected Performance

ATLAS-TDR-022

Canadian contributions:
I Designed and built new front-end-crate

base-planes (multilayer circuit boards that
can accommodate the routing of the new
trigger signals).
• Operations at TRIUMF and UVic.

I Also financial contributions to the new
trigger digitizer boards.

I Installation of the new electronics started at
the beginning of Long Shutdown 2 and is
now complete.

I ATLAS-Canada members are playing key
roles in the commissioning.
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Phase-1 Muon Upgrade [9]
I Replacement of ATLAS small wheels with

New Small Wheels (NSW).
I Improve online fakes rejection rate (by
×7) and offline tracking at endcaps.

ATLAS NSW Upgrade

3/17John McGowan (McGill University)

I In preparation for the high-luminosity LHC, the ATLAS muon detector system is being upgraded.

I New small wheel will store muon track information. In concert with the big wheel, it will be used to
trigger on muons that point back to the interaction point.

Brigitte Vachon (McGill) 25-May-2021

Muon System (Phase-1)
• Replacement of inner endcap wheel by 

the New Small Wheels


- Small-strip Thin Gap Chambers 
Primary trigger

Track segment with < 1 mrad resolution


- MicroMegas 

Primary precision tracking

Spatial resolution < 100 


- System redundancy

Both technologies used for trigger and 
precision measurements.

Total of 16 space points:  
8 MM + 8 sTGC


• NSW trigger and readout electronics.


• Reduce muon trigger fake rate by x7.

μm

11

1.3 < |η | < 2.7

Canadian contributions:
I Construction of 54 (25%) muon gas

chambers of the total 216 needed for the
NSW project.
• Operations at TRIUMF, Carleton, and McGill.

I Major contributions to assembly, integration,
and commissioning activities at CERN.

I Leading role in software and performance.

I NSW-A will be ready to be installed in pit in
late June, while NSW-C is looking promising.

I More details on the Canadian contribution to
be given at upcoming CAP talk.

Tony Kwan (McGill University) CAP 2021 June 7, 2021 22 / 24

https://cds.cern.ch/record/1552862/files/ATLAS-TDR-020.pdf
https://indico.cern.ch/event/985448/contributions/4295737/
https://indico.cern.ch/event/985448/contributions/4295737/


Conclusions

I Many measurements and searches were conducted with ATLAS detector
and the Run-2 LHC dataset.

I Despite the increase in complexity in the collision environment, the
performance of the detector has kept pace and remained good.

I Of the nearly 100 published full Run-2 results, 4 were shown in this
highlights talk:
• Evidence of H → ``γ;
• Test of Lepton Universality;
• Observation of γγ → WW ;
• Searches using Monojet Events.

I Phase-1 upgrades to the ATLAS detector are well underway in preparation
for a successful Run-3 and beyond.

Tony Kwan (McGill University) CAP 2021 June 7, 2021 23 / 24



References
[1]: “Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision
data set at

√
s = 13 TeV”, Accepted by: Eur. Phys. J. C.

[2]: “Performance of electron and photon triggers in ATLAS during LHC Run 2”, Eur. Phys. J. C
80 (2020) 47.

[3]: “Electron and photon performance measurements with the ATLAS detector using the
2015-2017 LHC proton-proton collision data”, JINST 14 (2019) P12006.

[4]: “Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp
collisions at

√
s = 13 TeV with the ATLAS detector”, Accepted by: Phys. Lett. B.

[5]: “Test of the universality of τ and µ lepton couplings in W -boson decays from t t̄ events with
the ATLAS detector”, Accepted by: Nature Physics.

[6]: “Observation of photon-induced W +W − production in pp collisions at
√

s = 13 TeV using the
ATLAS detector”, Phys. Lett. B. 816 (2021) 136190.

[7]: “Search for new phenomena in events with an energetic jet and missing transverse
momentum in pp collisions at

√
s = 13 TeV with the ATLAS detector”, Accepted by: Physical

Review D.

[8]: “ATLAS Liquid Argon Calorimeter Phase-I Upgrade Technical Design Report”,
ATLAS-TDR-022-2013.

[9]: “New Small Wheel Technical Design Report”, ATLAS-TDR-020-2013.

Tony Kwan (McGill University) CAP 2021 June 7, 2021 24 / 24

https://arxiv.org/pdf/2012.00578.pdf
https://arxiv.org/pdf/1909.00761.pdf
https://arxiv.org/pdf/1908.00005.pdf
https://arxiv.org/pdf/2103.10322.pdf
https://arxiv.org/pdf/2007.14040.pdf
https://arxiv.org/pdf/2010.04019.pdf
https://arxiv.org/pdf/2102.10874.pdf
https://cds.cern.ch/record/1602230/files/ATLAS-TDR-022.pdf
https://cds.cern.ch/record/1552862/files/ATLAS-TDR-020.pdf

