Heavy Neutrino Searches at ATLAS

Matthias Danninger on behalf of ATLAS Canada
2021-06-08 — CAP Congress 2021
The ATLAS experiment @ the LHC

The dashed tracks are invisible to the detector.
The ATLAS experiment @ the LHC

Obviously, not the focus of this talk!
Heavy Neutrino theoretical models

- Experimental signature of neutrino oscillation concludes neutrinos have very small masses
 - Several searches at ATLAS try to explain it and why they are so small

- Left Right Symmetric Models — LRSM
 - Restores parity by introducing heavy right-handed W_R/Z_R bosons and Heavy Neutral Leptons (HNLs)
 —> postulates heavy new $SU(2)_R$ for SM $SU(2)_L$
 - Models naturally embed the Seesaw Mechanism which couples light ν_L to HNLs through a mass mixing matrix
 —> allows HNLs at GeV/TeV scale (good for ATLAS!)
 - Models consider SeeSaw type I, II, and III

- Neutrino Minimal Standard Model (νMSM)
 - Incorporates SeeSaw type I mechanism
 - Small ν_L masses result from large mass of HNLs
 - Includes HNLs without additional vector bosons

image credit symmetry-magazine
Analysis Overview:

- Search for HNLs & WR in LRSM
- Search for HNLs in type III SeeSaw models (L^\pm, N^0)
- Search for HNLs in νMSM
Analysis Overview:

- **Search for HNLs & W_R in LRSM**
- Search for HNLs in type III SeeSaw models (L^\pm, N^0)
- Search for HNLs in νMSM
Search for HNLs and W_R in LRSM

- Search in the 2D plane of N_R and W_R
- Assume perfect symmetry at high scales: $g_L = g_R$
- Using dilepton events ($ee/\mu\mu$) with jets
Search for HNLs and W_R in LRSM — boosted

- Search in the 2D plane of N_R and W_R
- Assume perfect symmetry at high scales: $g_L = g_R$
- Boosted topology when $m_{WR} >> m_{NR}$
- Using events ($e/\mu\mu$) with large-radius jet
Analysis Overview:

- Search for HNLs & W_R in LRSM
- *Search for HNLs in type III SeeSaw models (L^\pm, N^0)
- Search for HNLs in νMSM
Search for type III Fermionic Triplet

- Search for mass-degenerate fermionic triplet \((L^\pm, N^0)\)
- Assume equal branching \(B_e = B_\mu = B_\tau = 1/3\)
- Three main topologies considered:
 - 2 leptons + jets
 - 3 leptons + jets
 - 4 leptons + jets

Main backgrounds in this search:
- Rare top events (3t, 4t, tt+W/H/Z) & Diboson events (irreducible)
- Fake non-prompt leptons (reducible)
Search for type III Fermionic Triplet

- Search for mass-degenerate fermionic triplet \((L^\pm, N^0)\)
- Assume equal branching \(B_e = B_\mu = B_\tau = 1/3\)
- Three main topologies considered:
 - 2 leptons + jets
 - 3 leptons + jets
 - 4 leptons + jets

Brand new result this week!
Analysis Overview:

• Search for HNLs & W_R in LRSM
• Search for HNLs in type III SeeSaw models (L^\pm, N^0)
• \textit{Search for HNLs in vMSM}
Indirect Searches for long-lived particles

- Introduce right-handed sterile neutrino states or **heavy neutral leptons (HNL)**

- HNLs with GeV masses could help explain Standard Model neutrino oscillations, baryon asymmetry of the universe and dark matter

Lepton Number Conserving (LNC)

Lepton Number Violating (LNV)
probing heavy neutral leptons (HNLs) at various experiments

- below Kaon mass can use decays $K^\pm \to \ell^\pm N$, $K^\pm \to \mu\mu\pi$ (e.g. NA62)
- below B or D meson masses $B^\pm, D_s^\pm, \tau^\pm \to \ell^\pm N$, $D^0 \to \ell^\pm \pi^\mp N$ (e.g. Belle, LHCb)
- below W, Z boson masses results from LEP ($Z \to N\nu$), actively explored also at ATLAS, CMS
- above W, Z boson masses decay to onshell bosons $W^\pm \to \ell^\pm N$, $N \to \ell^\pm W^\mp, \nu Z, \nu H$
ATLAS HNL searches — prompt and long-lived

prompt HNL Signal:
- Prompt tri-lepton event
- Sensitive to higher masses

long-lived HNL Signal:
- Prompt lepton
- Displaced vertex (DV) with 2 leptons with opposite charge
- $m_{HNL} < m_W$ HNL becomes long-lived

$$
\sigma(pp \rightarrow W) \cdot B(W \rightarrow \ell N) = \sigma(pp \rightarrow W) \cdot B(W \rightarrow \ell \nu) \cdot |U|^2 \left(1 - \frac{m_N^2}{m_W^2}\right) \left(1 + \frac{m_N^2}{2m_W^2}\right)
$$

image credit D. Trischuk
Why LLP searches use non-standard reconstructions?

If you want to reconstruct a charged particle with Impact Parameters \((d_0, z_0)\) outside the \textit{prompt phase-space} \(\rightarrow\) you need special reconstruction
Why LLP searches use non-standard reconstructions?

If you want to reconstruct a charged particle with Impact Parameters \((d_0, z_0)\) outside the prompt phase-space —> you need special reconstruction
Long-lived special reconstructions

• Default tracking on ATLAS turns off at $d_0 > 10$mm
• Computationally expensive; only available for 10% of data
• We use these tracks (and standard tracks) to form displaced vertices
Challenges to remove non-standard backgrounds

Cosmic muon
+ prompt lepton

Material interaction
+ prompt lepton

Metastable particle decay
(e.g. J/ψ)
+ prompt lepton

Random track crossing
+ prompt lepton
ATLAS HNL searches — prompt and long-lived

ATLAS Simulation
\[\sqrt{s} = 13 \text{ TeV}, \ W \rightarrow \mu N \rightarrow \mu \mu e \nu_e \]

- \(m_N = 10 \text{ GeV}, \) prompt
- \(m_N = 5 \text{ GeV}, \) displaced
- \(m_N = 7.5 \text{ GeV}, \) displaced
- \(m_N = 10 \text{ GeV}, \) displaced
- \(m_N = 12.5 \text{ GeV}, \) displaced

ATLAS
\[\sqrt{s} = 13 \text{ TeV}, \ 32.9\text{-}36.1 \text{ fb}^{-1} \]

- 95% CL exclusion, dominant \(\nu_L \) mixing
- Observed (prompt, LNV)
- Observed (displaced, LNV)
- Expected

Too few decays in decay volume

Decay too fast

max. mass \(\rightarrow \) kinematic limitations
• Unique sensitivity to HNL coupling —> strength in relatively low-mass region
• Future ATLAS searches will push down to lower couplings and additional couplings
Global constraints on Sterile Neutrinos

- Complementarity of searches is enormous for HNLs

EWPO, 0νββ, cLFV, CKM unitarity, BBN, direct searches, ν-osc.
Conclusions

• Heavy Neutrino searches are an exciting challenge in ATLAS

• HNL searches still have huge potential to grow in ATLAS
 → full LHC Run2 data still being analyzed; stay tuned!
 → especially long-lived signatures exciting!

• Exciting prospects for next LHC data taking run
 • We benefit from technical advances
 • New opportunities for discovery

• Complementarity to other experiments makes this an exciting and rich field!
Backup