Machine Learning for Energy Reconstruction at ATLAS

2021 CAP Virtual Congress - June 6-11

Presented by Luke Polson

Supervisor: Dr. Michel Lefebvre

Introduction

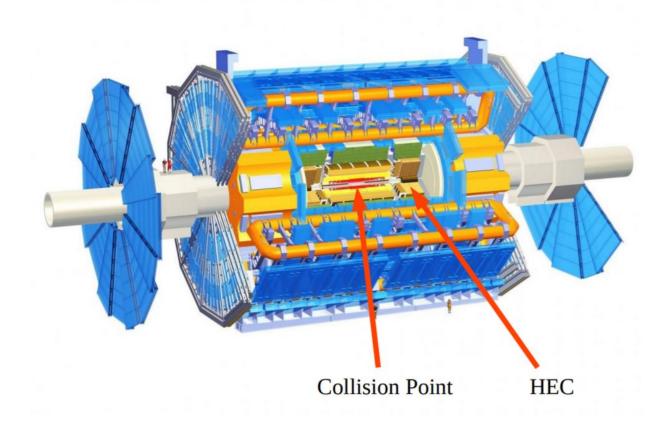
- A given event in ATLAS produces many particles
 - Energy of particles measured in different subsystems of the detector
 - Each energy has an associated uncertainty
 - Energies added together to get net energy for a reconstructed object (such as a jet)

$$\begin{array}{ccc} E_1 \pm \delta_{E_1} & E_2 \pm \delta_{E_2} & E_3 \pm \delta_{E_3} \\ \begin{array}{c} \text{Subsystem 1} \end{array} & \begin{array}{c} \text{Subsystem 2} \end{array} & \begin{array}{c} \text{Subsystem 2} \end{array} & \begin{array}{c} \text{Subsystem 3} \end{array} & \begin{array}{c} \text{Subsystem 3} \end{array} & \begin{array}{c} \text{Subsystem 2} \end{array} & \begin{array}{c} \text{Subsystem 3} \end{array} & \begin{array}{c} \text{Subsytem 3} \end{array} & \begin{array}{c} \text{Su$$

- Less uncertainty in energy enables
 - more precise measurements on fundamental particles like the Higgs Boson
 - Greater reach in searches, such as the search for dark matter

ATLAS Hadronic End Cap

• Measures energy of hadrons by sampling induced showers

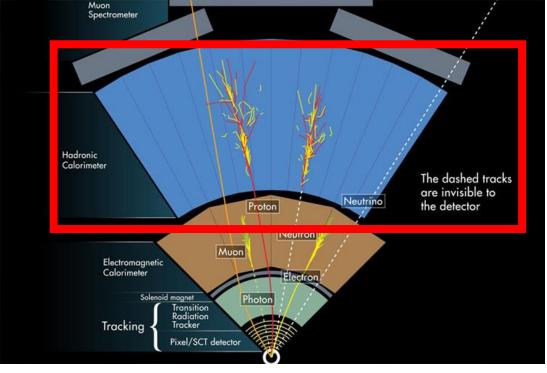


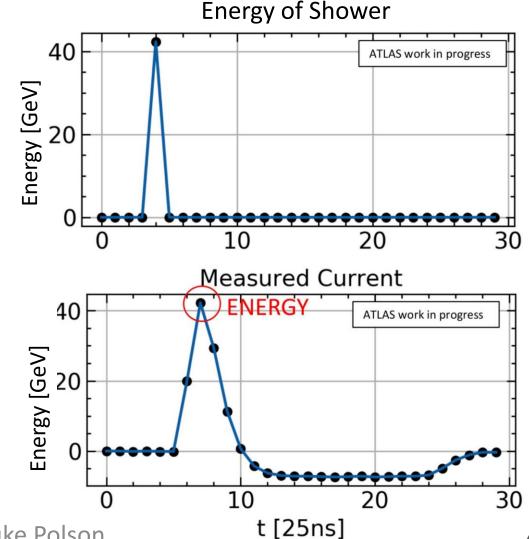


June 7, 2021

Detection Mechanism

- 1. Charged particles from induced shower ionize liquid argon
- 2. Electric field causes electrons to drift
- 3. Drifting electrons = measurable current





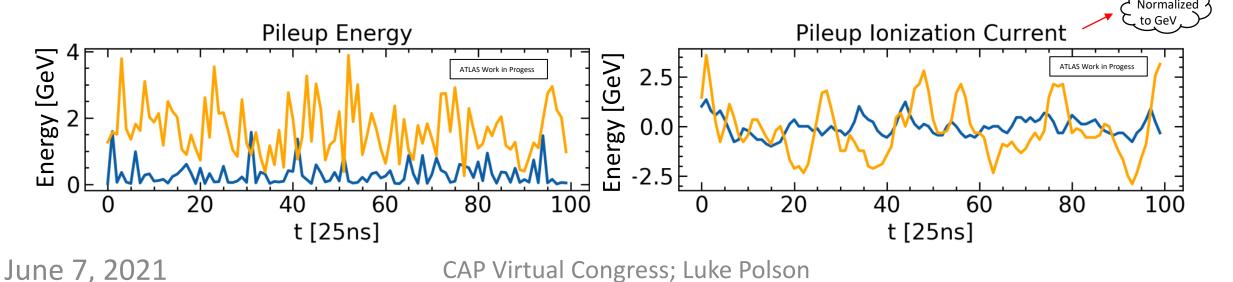
June 7, 2021

Pileup Noise

- LHC Plans to upgrade beam intensity in the future [1]
- Increased beam intensity => more detected events
- Energy of individual processes becomes difficult to measure

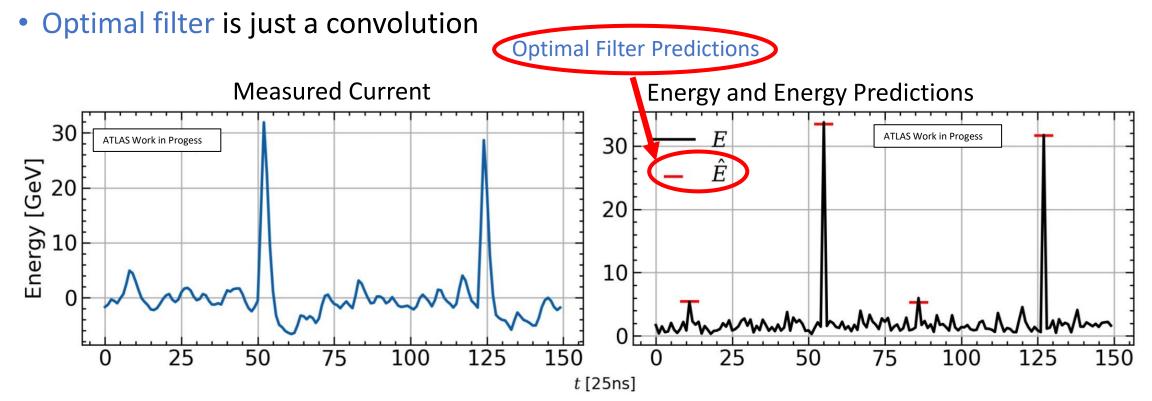
Blue: Present day ATLAS Orange: Expected future ATLAS

That's one thing I hate! All the noise, noise, noise, noise! - The Grinch

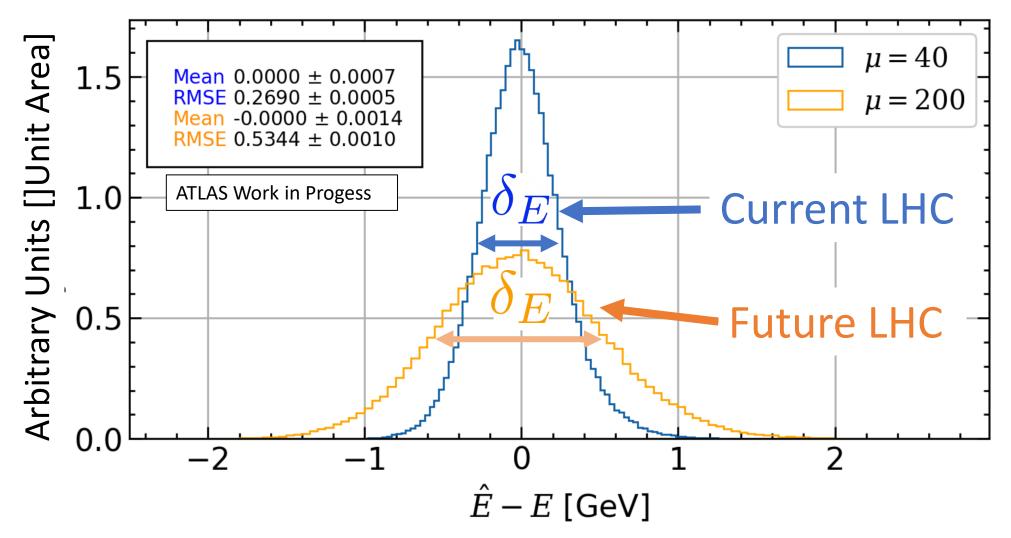


Pileup Noise

- Noise makes it difficult to predict energy of interesting events
- Current technique used for energy prediction is the **Optimal Filter technique** [2]



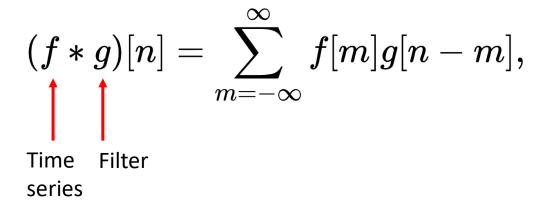
Pileup Noise



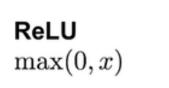
CAP Virtual Congress; Luke Polson

Convolutional Neural Networks

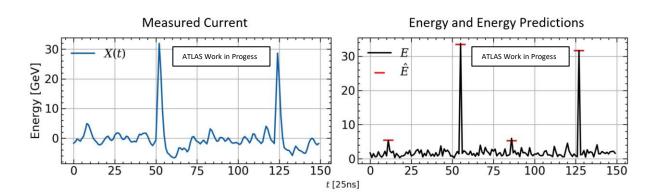
• Discrete Convolution:



- The Basic Idea behind CNN
 - 1. Apply convolution with $g_i[n]$
 - 2. Add a constant (bias)
 - 3. Apply non-linear function



repeat

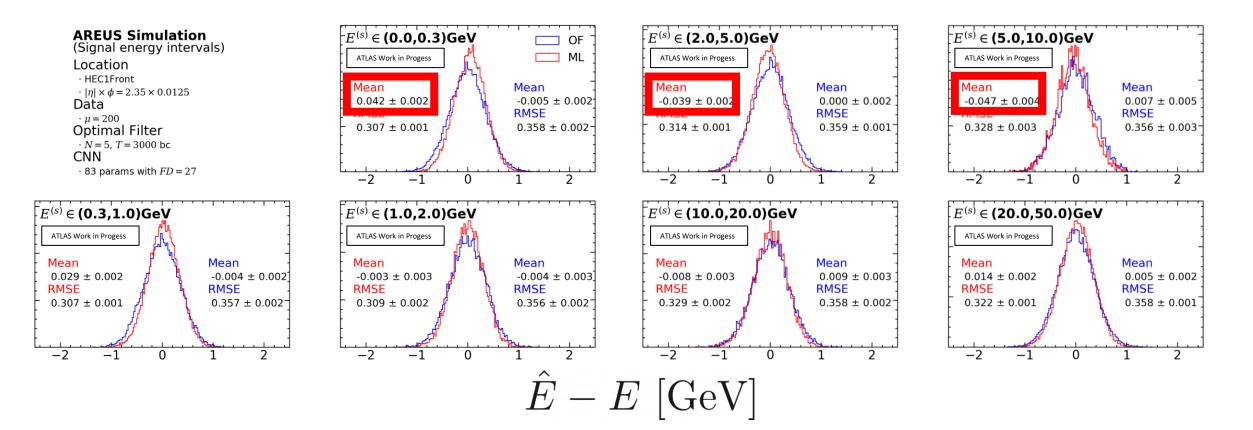


- The Basic Idea behind obtaining g
 - 1. Define "error" L (such as RMSE)
 - 2. Evaluate $\nabla L(g_1, g_2, ...)$
 - 3. Move in direction of decreasing L

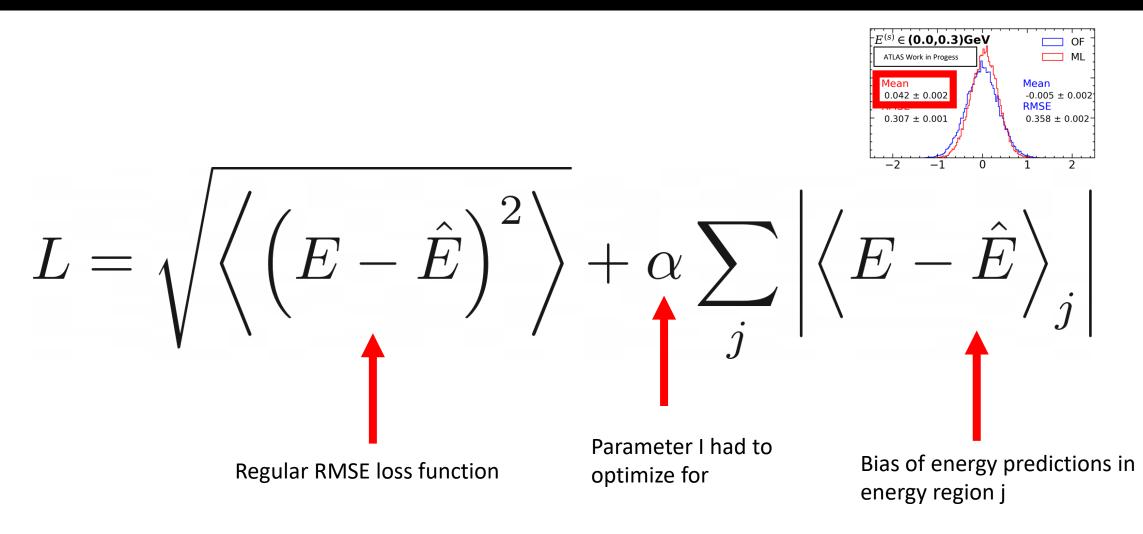
June 7, 2021

Issues with Machine Learning

- Optimal Filter has no bias
- RMSE loss function results in the CNN making biased predictions



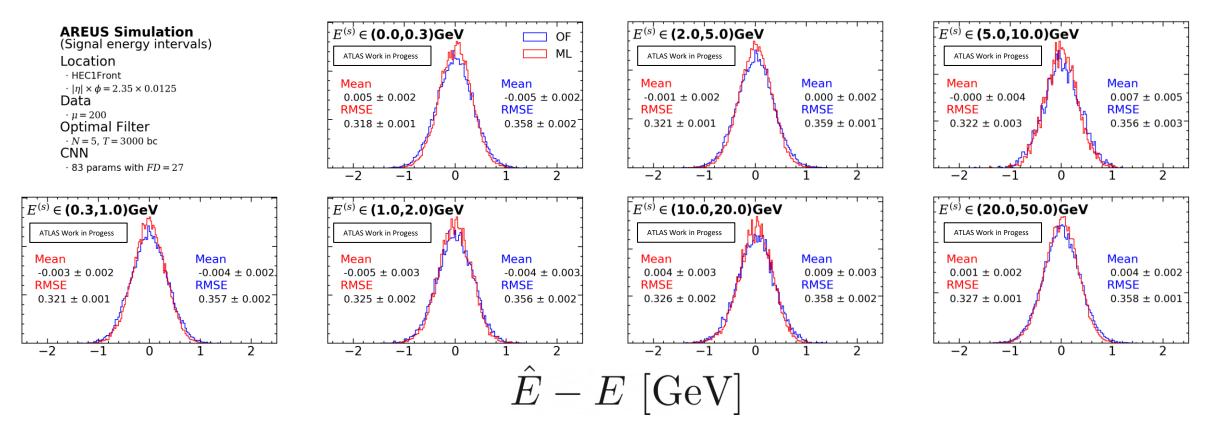
New Loss Function



June 7, 2021

Algorithm Comparison

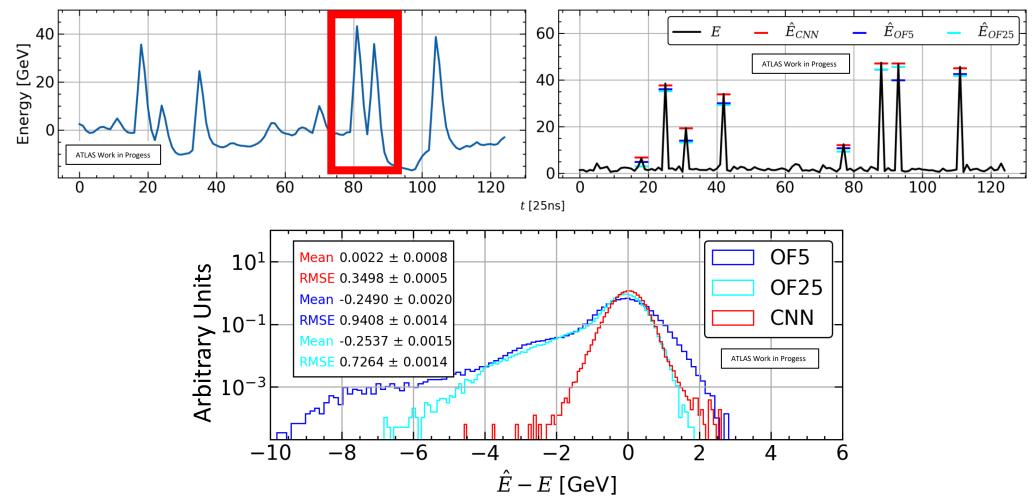
- The Convolutional Neural Network outperforms the optimal filter
 - For all different energy intervals!
 - Training requires special loss function



June 7, 2021

Algorithm Comparison

Convolutional Neural Network excels when pulses are close together



June 7, 2021

Conclusion

- Optimal Filter is the presently used technique for reconstructing energy in the ATLAS Hadronic Endcap Subsystem of ATLAS
 - Perform a convolution on the measured current
- Optimal Filter performs worse in expected future LHC conditions
 - Energy measurements have a greater associated uncertainty

$$\delta_E^{(\text{Future LHC})} > \delta_E^{(\text{Current LHC})}$$

- The convolutional neural network outperforms the optimal filter in future LHC conditions
 - Requires a special loss function during training

$$\delta_E^{(\mathrm{CNN})} < \delta_E^{(\mathrm{OF})}$$

References

[1] G Apollinari, I Bejar Alonso, O Bruning, M Lamont, and L Rossi. High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report. CERN Yellow Reports: Monographs. CERN, Geneva, 2015

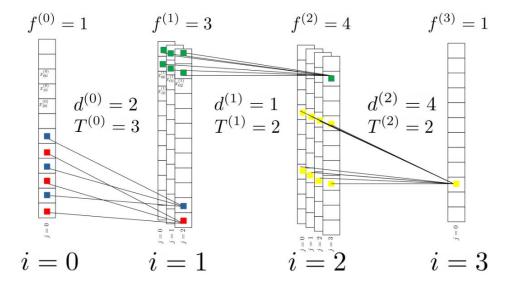
[2] W.E. Cleland and E.G. Stern. Signal processing considerations for liquid ionization calorimeters in a high rate environment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 338(2):467 – 497, 1994

[3] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio (arxiv:1609.03499)

June 7, 2021

Backup: CNN Mathematics

$$\begin{array}{l} \text{INPUT} & \text{OUTPUT} \\ (X_t = x_{t0}^{(0)}) \to x_{tj}^{(1)} \to \dots \to x_{tj}^{(L-1)} \to (x_{t0}^{(L)} = \hat{y}) \\ \\ x_{tj}^{(i+1)} = \sum_{m=0}^{f^{(i)}-1} \sum_{n=0}^{T^{(i)}-1} R^{(i)} \left(A_{jmn}^{(i)} x_{n'm}^{(i)} + b_j^{(i)} \right) \\ \end{array}$$



- 1. *i* represents the layer index, and $f^{(i)}$ is the number of feature maps (or dimensionality) of the time series in layer *i*. The first and last layers have $f^{(i)} = 1$, for example, corresponding to a univariate time series. *L* is the number of layers in the network.
- 2. j, which can take on the indices 0 to $f^{(i)} 1$ in layer i, represents the feature map (or filter) index. t represents the time index for the time series.
- 3. $A_{jmn}^{(i)}$ is the weight matrix and $b_j^{(i)}$ is the bias term for feature map j in layer i. These parameters are modified during the training procedure.
- 4. $n' = t d^{(i)}n$ where $d^{(i)}$ is the dilation rate of layer *i*.
- 5. $T^{(i)}$ is the size of the filter in layer *i*. It is also typically referred to as the kernel size.
- 6. $R^{(i)}$ is the activation function for layer *i* of the neural network. This thesis uses the activation function $R^{(i)}(x) = 0$ if x < 0 and $R^{(i)}(x) = x$ if $x \ge 0$. This is known as the *relu* loss function.

June 7, 2021

Backup: CNN Configuration Used

- Structure of Convolutional Neural Network (Based on WaveNet [3])
 - 3 Layers (Dilation rates of 1, 3, 1 respectively)
 - Filters per layer is 3, 3, 1 respectively
 - Kernel size is 7, 7, 3 respectively
 - Allowed to break causality by 9 bunch crossings (225 ns)
 - 100 parameters total

Layer (type)	Output Shape	Param #
input_10 (InputLayer)	[(None, None, 1)]	0
conv1d_18 (Conv1D)	(None, None, 3)	24
conv1d_19 (Conv1D)	(None, None, 3)	66
concat (Conv1D)	(None, None, 1)	10
Total params: 100 Trainable params: 100 Non-trainable params: 0		