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NA62 Experiment at the CERN SPS
NA62 primary objective: Measure the K+ → π+νν branching ratio. Excellent probe for
new physics in the flavour sector.

BSM. = (8.4± 1.0)× 10
−11

[A. J. Buras et al, 15’]
Bexp. =

(
10.6+4.0−3.4

∣∣∣
stat.

± 0.9syst.
)
× 10

−11

[NA62 Collaboration, 21’]

75 GeV/c mixed hadron beam, Kaon “decay in flight” technique:

For details about the detector, see [NA62 collaboration, 17’]

• Identification of K and π
• Multi-track event rejection
• Vetoes for γ and µ, rejection > 10

7

• O (100 ps) timing for K - π matching
• m2

miss. = (PK+ − Pπ+ )2

K+ → µ+νµ (B ≈ 0.64)

↓ mis− id

K+ → π+νν
(
B ≈ 10

−10
)
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https://arxiv.org/abs/1503.02693
https://arxiv.org/abs/2103.15389
https://arxiv.org/abs/1703.08501


Today’s Topic: Calorimetric Particle Identification at NA62

We need an overall µ+ rejection > 10
7 while maintaining adequate π+ acceptance.

Partially redundant systems: RICH and three calorimeters:

Liquid Krypton Calorimeter (LKr)
Homogeneous calorimeter, cylindrical
shape, 5.3m2 front surface, 13248
2× 2× 127 cm3 cells.

MUV1 (and MUV2)
Iron/scintillator sandwich calorimeters, 44
(22) scintillator strips alternately oriented
horizontally and vertically. Front surface
2.6× 2.6m2, about 8 interaction length.
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Machine Learning Methods: Training Sets

Pions, muons and positrons tracks are selected from common kaon decays modes (data):
• K+ → π+π0 for pions,
• K+ → µ+νµ for muons,
• K+ → π0e+νe for positrons.

Events with a single downstream track matched to a kaon, photon vetos, and
• Pion: π0 mass reconstruction, RICH,M2

miss,
• Muon: RICH,M2

miss,
• Positron: π0 mass reconstruction, RICH,M2

miss.

Training and validation sets:

Data period Muon Pion Positrons
2016A 16 159 022 4 700 336 320 398
2017B 35 610 772 11 111 872 834 078
2018B 31 835 976 8 908 019 670 807

A completely independent test set was kept aside during the development phase
(minimum bias trigger).

RICH: Ring-imaging Cherenkov
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From Energy Deposits to Image Recognition
Current Calo PID algorithm relies on a Boosted Decision Tree (BDT) based on
reconstructed quantities such as cluster energies and shapes.

Other approach: Direct correspondence between the readout geometry and a five
channels image. No depth information, the shower is projected on a plane.
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• LKr: 22× 22 cells patch centred around the charged track impact point,
• MUV1: Full detector, centred around the charged track impact point,
• MUV2: Full detector, centred around the charged track impact point.
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Processing Pipeline
Optimize π/µ separation for single track events in the 15 < Ptrk. < 40 GeV/c range.

• The µ+ set is dominated by “easy” to distinguish muons. We want the ML
algorithm to focus on “hard” cases,

• Similarly, most of the e+ are easy to identify in the LKr (E/p cut),
→ Filter those events before training ML models.

Track MUV3 hits? Filter Muon-like? ML Model (pµ, pπ , pe)

pµ = 1

n n

y y

Typical example (2016A):
Event class Selected Used for training/validation
µ+ 16 159 022 3 245 995
π+ 4 700 336 3 647 318
e+ 320 398 26 395
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Convolutional Neural Network (CNN) Architecture

We opted for a simplified ResNet-18 architecture [K. He et al, 15’]

44

44
7 x 7 conv. / batch norm. 

ReLu

5
64 64

ResNet block 2 x

ResNet block 2 x

ResNet block 2 x

128 256

Fully connected layer

Pμ

Pπ

Pe

Global avg. pooling

ResNets have been shown to improve the learning performances of deep CNNs. In
addition, the shortcut connections help to control the vanishing gradient problem.

The network was simplified by removing
• the last two residual blocks,
• the 3× 3 maximum pooling layer after the first batch
normalization layer.

3 × 3 Conv.

Batch Norm.

ReLU

3 × 3 Conv.

Batch Norm.

+

ReLU

f (x) = x + fr (x)

fr (x) x

x
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https://arxiv.org/abs/1512.03385


Preliminary Results

The network performances were evaluated with the unseen test set once the network
architecture frozen.
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The CNN was trained on tracks in 15 < Ptrack < 40 GeV/c range but validated over
the 15 < Ptrack < 50 GeV/c range.

Training a dedicated CNN per momentum bin was attempted but didn’t improve the
performances.
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Conclusion

• The NA62 PID system was designed to have a µ+ mis-id probability < 10
−7 for an

overall pion acceptance around 80%.
Complementary sub-systems: RICH→ O

(
10

−3
)
and Calorimeters→ O

(
10

−5
)
.

• This work focuses on the calorimeters: A Convolutional Neural Network trained on
raw hits data outperforms the current BDT.

• π+ ID efficiency increases from 72% to 92% while keeping the µ+ mis-id
probability at the 10−5 level.
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• The algorithm is currently being implemented into the NA62 software framework
(C++, libtorch).

8 / 8





Particle Identification Performances

Performance of the π+ identification using calorimeters (left) and RICH (right) measured
on 2017 data.


