N-heterocyclic carbene adsorption and self-assembly on Au(111): Fine-tuning the binding mode

Ryan Groome

2021 CAP Virtual Congress

Department of Physics, Engineering Physics, and Astronomy
Queen’s University

Supervisor: Dr. Alastair McLean

May 27, 2021
Background

- Surface functionalization is frequently achieved using self-assembled monolayers (SAMs) of alkanethiols [1, 2]
 - Controlled adjustment of the terminal functional group
 - Applications include lab-on-chip sensors [3, 4]
 - Thermal and oxidative instability can limit commercial use [5, 6]

- N-heterocyclic carbenes (NHCs) are alternative, possibly superior, surface anchors [6, 7, 8]
Methods

- Low-temperature scanning tunnelling microscopy (STM) study of NHC adsorption and self-assembly on Au(111)
- Structurally different NHCs to determine factors that control orientation, ordering, mobility, and adatom involvement
- NHCs SAMs prepared in vacuum by flash deposition of the hydrogen carbonate salt
- Constant-current STM imaging performed at 77 K
NHC adsorption modes on Au(111)

- NHCs adopt multiple distinct binding modes on Au(111)

 - Surface-bound NHC
 - Adatom-bound NHC
 - \((\text{NHC})_2\text{Au}\) complex

- Binding and self-assembly dependent on:
 - Wingtip structure
 - Substituents on the nitrogen atoms
 - Surface coverage
 - Monitored from sub-monolayer up to saturation
 - Temperature
 - Substrate temperature during deposition and upon post-deposition annealing
Effect of wingtip structure

- SAMs prepared on room-temperature Au(111) surfaces
 - NHC^{Me}
 - NHC^{Et}
 - $\text{EtNHC}^{\text{iPr}}$

Flat-lying (NHC)$_2$Au complexes

- Double herringbone
- Rhombic
- Oblique
- Chiral Kagome
- Oblique

8.0 x 8.0 nm2
Effect of wingtip structure (cont.)

- Monte-Carlo simulation of \((\text{NHC})_2\text{Au}\) complexes
 - Discretized interaction model
 - Move probability given by the Boltzmann distribution

- Aim to investigate (and predict) self-assembled structures
Effect of wingtip structure (cont.)

- NHCs with bulkier wingtip groups (iPr, tBu) stand upright on adatoms.

Experimental evidence includes:
- Vacancy islands
- Lattice structure
- Co-deposition experiment
- Apparent height comparison at steps
Effect of wingtip structure (cont.)

- Experimental observations consistent with *ab initio* DFT calculations

- Fine-tuning of the wingtip substituents provides flexibility in controlling the binding mode
 - Surface coverage and substrate temperature are also critical factors
Effect of surface coverage

- NHC binding also depends on the surface coverage
- Associated with the production of Au adatoms

Coverage-dependent NHCiPr adsorption configurations

Approx. one atomic step \[\Delta z \] Upright, surface-bound NHC

Flat-lying (NHC)\textsubscript{2}Au complex

Upright, adatom-bound NHC

Increasing surface coverage \[\rightarrow \] Critical coverage

Saturated monolayer

Low coverage Moderate coverage Critical coverage Saturation coverage

2D gas phase

Mixed lattice

Surface-bound lattice

Vacancy islands

Complexes

Zig-zag lattice

Single phase of upright, adatom-bound NHCs
Effect of temperature

- Heating promotes
 - Ordering
 - Healing of vacancy islands
 - Irreversible formation of (NHC)$_2$Au complexes

- Deposition onto LN$_2$-cooled surfaces
 - Precursor phase resulting in magic finger growth
Conclusions and future outlook

Conclusions

- NHC adsorption critically depends on wingtip structure, surface coverage and substrate temperature
- These factors determine NHC orientation, ordering, mobility, and adatom involvement
- Understanding, and the ability to tune, the binding mode may be important for future NHC-SAM applications

Recommendations

- Low-temperature STM imaging
- Complementary imaging modalities
- Chemical/entropic control of the upright adsorption mode
 - Crystal surface
 - NHC structure
 - Deposition method
A special thanks to many outstanding collaborators!

- **My group (STM)**
 - Queen’s Physics
 - Alex Inayeh
 - Alastair McLean

- **NHC synthesis**
 - Queen’s Chemistry
 - Ishwar Singh
 - Alex Veinot
 - Cathleen Crudden

- **Density functional theory**
 - UFU Physics
 - Felipe Crasto de Lima
 - Roberto Hiroki Miwa

- **Statistical mechanics**
 - UM, Queen’s Physics
 - Andrei Klishin
 - Greg van Anders
References

