

CAP 2021

Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration References N-heterocyclic carbene adsorption and self-assembly on Au(111): Fine-tuning the binding mode

Ryan Groome

2021 CAP Virtual Congress

Department of Physics, Engineering Physics, and Astronomy

Queen's University

Supervisor: Dr. Alastair McLean

May 27, 2021

Background

CAP 2021

- Background
- Methods
- Adsorptio
- Wingtips
- Coverage
- Temperature
- Conclusions
- Collaboration
- References

- Surface functionalization is frequently achieved using self-assembled monolayers (SAMs) of alkanethiols [1, 2]
 - Controlled adjustment of the terminal functional group
 - Applications include lab-on-chip sensors [3, 4]
 - Thermal and oxidative instability can limit commercial use [5, 6]
- N-heterocyclic carbenes (NHCs) are alternative, possibly superior, surface anchors [6, 7, 8]

 H_3C

Terminal group

Alkyl chain

(spacer group)

Methods

CAP 2021

- Background Methods Adsorption Wingtips Coverage Temperature Conclusions
- Collaboratio
- References

- Low-temperature scanning tunnelling microscopy (STM) study of NHC adsorption and self-assembly on Au(111)
- Structurally different NHCs to determine factors that control orientation, ordering, mobility, and adatom involvement
- NHCs SAMs prepared in vacuum by flash deposition of the hydrogen carbonate salt
- Constant-current STM imaging performed at 77 K

NHC adsorption modes on Au(111)

CAP 2021

Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration • NHCs adopt multiple distinct binding modes on Au(111)

Surface-bound NHC

(NHC)₂Au complex

- Binding and self-assembly dependent on
 - Wingtip structure
 - Substituents on the nitrogen atoms
 - Surface coverage
 - Monitored from sub-monolayer up to saturation
 - Temperature
 - Substrate temperature during deposition and upon post-deposition annealing

Effect of wingtip structure

CAP 2021

Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration References

Flat-lying (NHC)₂Au complexes

 SAMs prepared on room-temperature Au(111) surfaces NHC^{Me} NHC^{Et} EtNHC^{iPr}
 Double herringbone Rhombic Oblique

Effect of wingtip structure (cont.)

CAP 2021

- Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration
- Monte-Carlo simulation of (NHC)₂Au complexes
 - Discretized interaction model
 - Move probability given by the Boltzmann distribution

Aim to investigate (and predict) self-assembled structures

Effect of wingtip structure (cont.)

CAP 2021

- Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration References
- NHCs with bulkier wingtip groups (*i*Pr, *t*Bu) stand upright on adatoms

Experimental evidence includes

- Vacancy islands
- Lattice structure
- Co-deposition experiment
- Apparent height comparison at steps

Effect of wingtip structure (cont.)

CAP 2021

Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration References Experimental observations consistent with *ab initio* DFT calculations

- Fine-tuning of the wingtip substituents provides flexibility in controlling the binding mode
 - Surface coverage and substrate temperature are also critical factors

Effect of surface coverage

CAP 2021

Background Methods Adsorption Wingtips **Coverage** Temperature Conclusions Collaboration References NHC binding also depends on the surface coverage
 Associated with the production of Au adatoms

Coverage-dependent NHC^{iPr} adsorption configurations

Effect of temperature

CAP 2021

- Backgrounc Methods Adsorption Wingtips
- Coverage
- Temperature
- Conclusions
- Collaboration
- References

- Heating promotes
 - Ordering
 - Healing of vacancy islands
 - Irreversible formation of (NHC)₂Au complexes
- Deposition onto LN₂-cooled surfaces
 - Precursor phase resulting in magic finger growth

Conclusions and future outlook

CAP 2021

Background Methods Adsorption Wingtips Coverage Temperature **Conclusions** Collaboration

References

Conclusions

- NHC adsorption critically depends on wingtip structure, surface coverage and substrate temperature
- These factors determine NHC orientation, ordering, mobility, and adatom involvement
- Understanding, and the ability to tune, the binding mode may important for future NHC-SAM applications

Recommendations

- Low-temperature STM imaging
- Complementary imaging modalities
- Chemical/entropic control of the upright adsorption mode
 - Crystal surface
 - NHC structure
 - Deposition method

Acknowledgements

CAP 2021

- Backgroun Methods
- rasorptic
- Wingtips
- Coverage
- Temperature
- Conclusions
- Collaboration

- A special thanks to many outstanding collaborators!
- My group (STM)
 Queen's Physics
 - Alex Inayeh
 - Alastair McLean
- NHC synthesis
 - Queen's Chemistry
 - Ishwar Singh
 - Alex Veinot
 - Cathleen Crudden

Density functional theory

- UFU Physics
 - Felipe Crasto de Lima
 - Roberto Hiroki Miwa

Statistical mechanics

- UM, Queen's Physics
 - Andrei Klishin
 - Greg van Anders

NANOPHYSICS Queen's University

INSTITUTO DE FÍSICA Universidade Federal de Uberlândia

References

CAP 2021

- Background Methods Adsorption Wingtips Coverage Temperature Conclusions Collaboration References
- C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. *Journal of the American Chemical Society*, 111(1):321–335, 1989.
- [2] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. *Chemical Reviews*, 105(4):1103–1169, 2005.
- [3] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun. Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2):8–26, 2008.
- [4] X. D. Hoa, A. G. Kirk, and M. Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. *Biosensors and Bioelectronics*, 23(2):151–160, 2007.
- [5] C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. *Chemical Society Reviews*, 39(5):1805–1834, 2010.
- [6] C. M. Crudden, J. H. Horton, I. I. Ebralidze, O. V. Zenkina, A. B. McLean, B. Drevniok, Z. She, H.-B. Kraatz, N. J. Mosey, T. Seki, E. C. Keske, J. D. Leake, A. Rousina-Webb, and G. Wu. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. *Nature Chemistry*, 6(5):409–414, 2014.
 - [7] C. M. Crudden, J. H. Horton, M. R. Narouz, Z. Li, C. A. Smith, K. Munro, C. J. Baddeley, C. R. Larrea, B. Drevniok, B. Thanabalasingam, A. B. McLean, O. V. Zenkina, I. I. Ebralidze, Z. She, H.-B. Kraatz, N. J. Mosey, L. N. Saunders, and A. Yagi. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. *Nature Communications*, 7, 2016.
 - [8] G. Wang, A. Rühling, S. Amirjalayer, M. Knor, J. B. Ernst, C. Richter, H.-J. Gao, A. Timmer, H.-Y. Gao, N. L. Doltsinis, F. Glorius, and H. Fuchs. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. *Nature Chemistry*, 9(2):152–156, 2017.