Deep Mine Cooling

ADMIRA DHES INC.

Cryogenic-based Chilling for Mines Patent Pending Hybrid Cryogenic Technology

Daniel L. Cluff

C.Eng. (UK), P.Phys.(CAN) PhD

CEO CanMIND Associates

www.deepmining.ca

Sujit Sengupta

P.Eng. (ONT, AB) Master of Technology

President AdmiraDHES

www.admiradhes.com

Big Picture of Underground Cryogenics

Large UG Equipment Powered by Dearman Engines

UG Cryogenic Piping and Storage

Cryogenic Chilling CFD Modelling

Compressed Air System Design

Heat Exchanger

Receiver size Piping Modularity design

Power/chilling co-generation

Rapid Response Chilling on Demand

2021 DR DANIEL CLUFF

27/04/2021

Why Liquid Air Energy Storage (LAES) A Zero Carbon Green Energy Technology EVERY TIME YOU DO SOMETHING WITH LiqAir IT ABSORBS HEAT !!

- The cryogenic liquids are produced on the surface in a standard cryogenic liquefaction plant or underground.
 - Heat rejected on or to surface
- Surface LAES System provides economy of scale, marketable byproducts, Ar, O₂, N₂
- Cryogenic liquid is delivered to the depth required
 - Depends on mine design decision
 - Sent to a central location and chill air in downcast shaft
 - Sent to individual levels to chill on demand

LAES Process

- A Liquid Air Energy Storage (LAES) system is comprised of a **charging system**, an **energy storage section** and a **discharging system**.
- Standard industrial air liquefaction plant; the electrical grid or a renewable energy project supply the electrical energy.
- Air drawn from the ambient environment. The process creates liquid air a cryogenic liquid at temperatures near -196°C (78 K).
- The liquid air is stored in a low pressure insulated tank.
 - Easily accessed energy storage repository
 - Low risk to the environment
 - We create a mix of O_2 and N_2 appropriate to the conditions and use
- When power is required liquid air is pumped to a high pressure and evaporated through a turbine system.
- Capable of providing the pressure necessary to power a piston engine or turbine resulting in useful work to generate electricity or drive a cryogenically powered vehicle.

Simplified LAES Schematic

2021 DR DANIEL CLUFF

700+ l Gaseous Air Per 1 l Liquid Air

Cold Storage in a Liquid

- **1)** Latent Heat = ΔQ_L = mass x L_v $L_{v=205 \text{ kJ/kg}}$
- **2)** Expansion Heat = $\Delta Q_a = \text{mass x } C_p \Delta T_g$

The specific heat capacity of air $C_p = 1.007 \text{ J/kg-K}$

$$\Delta Q_{\rm T} = \Delta Q_{\rm L} + \Delta Q_{\rm a}$$

 $\Delta Q_{\rm T} = m(L_{\rm v} + C_{\rm p} \Delta T_{\rm g})$

and for a mass = 1 kg,

1kg(205 kJ/kg + 226.13 kJ/kg)

\approx 430 kJ/kg

The total heat absorbed by 1 kg due to change of state and expansion is 430 kJ/kg so 1 kg/s of liquid flow provides 430 kWr of cooling.

27/04/2021

2021 DR DANIEL CLUFF

Mine Cooling Via Cryogenics So for 1 MW of cooling

The mass flow of liquid air required = 2.2 kg/s

The density of liquid air is about 870 kg/m³

The liquid flow of liquid air required = 2.6 l/s

The final gaseous volume is **1.9 m³ of air**

Cooling, Electricity and Compressed Air Three Incremental Cases for Glencore OPD

Stand Alone Simple chilling

- Liquid air released directly to airflow
 - 2.6 l/s (liq) \rightarrow 1.9 m³/s (air) \rightarrow 1 MWr

Chilling plus Electrical Power

- Liquid air exhaust directed through turbine
 - 1043 tpd \rightarrow 5 MWe plus 8 MWr 24 hrs/dy

• Chilling, Electricity and Compressed Air

• 5000 cfm (2.4 m³/s) \rightarrow 1.2 MWr

Bulk Air Chilling vs Cryogenics Comparison for Glencore Onaping Depth

- The CAPEX of both the LA and BAC are similar
- Significant OPEX reductions are possible based on selected LA option
- LA is a fast response "Chilling on Demand"TM (CODTM) system
 - able to offset an abrupt heat influx in a lower air flow i.e. all electric mine.
- Optimal surface plant size is 2000 tpd with a 600 t storage facility allowing multiple options for Glencore OPD:
 - Energy storage
 - Electricity/chilling cogeneration production of 5 MWe with 8 MWr
 - Compressed air/chilling cogeneration of 2500 cfm with 600 kWr
 - Off-sales of surplus oxygen and argon
 - Powering vehicles

Key Concepts in Glencore OPD Study

- LA demand was correlated to 30 year environmental data.
- Cryogenic liquid is a form of stored energy.
- 2000 m Level bulk release chills sublevels (approximates BAC).
- Design condition: 12º/12º (DB/WB) at 2000 m from 28º/19º (DB/WB), provided by HATCH
- LA CODTM allows for daily cooling cost calculations.
- Underground cryogenic chilling system produces Electricity
- Compressed air/chilling cogeneration eliminates the compressed air plant and piping from the surface.
- Economic statements are accurate to +/- 25%.
- The 20 year NPV is calculated at a discount rate of 10% including both CAPEX and OPEX.

CFD Model for Chilling the Entire Airflow, Similar to a BAC

CFD Model for Chilling the Entire Airflow, Similar to a BAC

Perpendicular to Shaft Air Flow T_{cryoga}78 to 85 K on Exit Density about 4 kg/m

CFD Model Flow Trajectories

Close up View of Heat Exchanger 1.67 sec

Min=58.8319 K Max=325.003 K Time = 1.67701435 s

Close up View of Heat Exchanger 8.2 sec

Average Temperature of Air in Shaft

500 m deep cyl assemb 3.SLDASM [500 m deep [500 m]]

NPV Comparison 2000 tpd Plant to BAC Option 1: Base Configuration (Vaporiser Only)

	CRYO (\$M)	BAC (\$M)
	CanMIND	HATCH
CAPEX	\$31.9	\$31.4
OPEX/yr	\$3.48	\$3.22
NPV (10%)	-\$61.60	-\$58.80

Cryogenic OPEX = maintenance 0.38M plus energy cost 3.1M

BAC OPEX = maintenance 0.82M plus energy cost 2.4M

Maintenance for cryo is low because it is tried and true started in 1900's

Option 1: Chilling/Surplus Estimate

Option 2: Cogeneration Simultaneous Production of Electricity and Chilling

• Cogeneration Chiller:

- 5 MWe operating for 24 hrs/day
- 8 MWr min. to 14 MWr max. chilling
- Consumes 1043 tpd
- 2000 tpd Plant operates for 12.5 hrs/day drawing 16.7 MWe
- Electricity generator operates for 24 hrs/day producing 5 MWe
- Requires hourly energy consumption/generation to calculate overall energy cost.
 - Mid-day is high cost recovery
 - Evening is low cost production

Peak Power Cost Shifting

Cogeneration of 5 MWe Electricity/chilling

Cogeneration of 5 MWe Electricity/chilling

Cogeneration of 5 MWe Electricity/chilling

Option 2: Energy Cost Comparison Cogeneration Electricity/Chilling vs BAC

	Energy Profile (MWH/yr)		Estimated Cost (\$ M/yr)		
	CRYO	BAC	CRYO	BAC	
Purchased	76193	20000	\$6.5	\$2.4	
Recovered	-43800	0	-\$5.3	\$0	
Supplemental chilling	4300	NONE	\$0.48	Not Possible	
Fan Energy Savings	-4000	0	-\$0.45	No Savings	
Total energy	32693	20000	\$1.23	\$2.4	
Maintenance			\$0.51**	\$0.82	
Total OPEX			\$1.74	\$3.22	

It takes approximately 76000 MWH/yr to produce enough cryogen to operate a 5 MWe (24/7). The 5 MWe cogeneration system produces 43800 MWH/yr. The cost of the production of LA (during off-peak energy rates) versus that of the energy production (during peak electricity rates), results in an overall savings.

** needed to add \$.13M for PRU re: CRYO maintenance option

Option 2: NPV Comparison Cogeneration Electricity/Chilling vs BAC

\$ millions	CRYO 5 MWe (24/7)	BAC
CAPEX	\$44.7	\$31.4
OPEX/yr	\$1.74	\$3.22
NPV (10%)	-\$59.52	-\$58.8

OPEX includes Electricity & maintenance costs

5 MWe + 8 MWr Power/electricity Cogeneration

Add 5000 cfm (2.4 m³/s) compressed air to the existing system

Cost Estimate: Typical 5000 cfm (2.4 m³/s) System

	Cost Item	\$M/yr	•
Opex	Energy cost from industry standard formula	\$0.9	
	Energy cost from Atlas Copco Calculator	\$1.02	- Φ1 IVI
	Maintenance = 12% of energy cost	\$0.12	
	Equipment = 12% of energy cost	\$0.12	
Capex	Piping installed <i>one time cost</i> (maintenance ?)	\$5.00	
-	essed air costs/yr n year horizon Energy 76%	2% oital 12%	
28/04/2	021 2021 DR DANIEL CLUFF		29

28/04/2021

2021 DK DANIEL CLUFF

Option 3: Cost Comparison. Lair vs BAC Cogeneration + Compressed Air 5000 cfm (2.4 m³/s)

Estimated Cost

		CRYO	BAC
Total OPEX Cogeneratio	n (\$M/yr)	\$1.74	\$3.22
Supplemental chilling red	duced	-\$0.12	
Additional OPEX	Energy	\$0.70	\$1.00
	Maintenance	\$0.15	\$0.24
Total OPEX		\$2.47	\$4.46
CAPEX Cogeneration (\$	M)	\$44.7	\$31.4
Equipment (compressors	\$0.70	\$1.00	
Piping + installation	\$0.50	\$5.00	
Total CAPEX	2021 DR DANIEL CLUFF	\$45.9	37.50 ₃₀

Option 3: NPV Comparison Option 2 plus 5000 cfm (2.4 m³/s) Compressed Air

\$ millions	CRYO 5 MWe (24/7)	BAC
CAPEX	\$45.9	\$37.5
OPEX/yr	\$2.47	\$4.46
NPV (10%)	-\$66.91	-\$75.48

OPEX includes Electricity & maintenance costs

Vaporiser

(\$M)	CAPEX	OPEX
BAC	\$31.4	\$3.22/yr
CRYO	\$31.9	\$3.48/yr

	Vap	oriser	Cogeneration		
(\$M)	CAPEX OPEX		CAPEX	OPEX	
BAC	\$31.4	\$3.22/yr	\$31.4	\$3.22/yr	
CRYO	\$31.9	\$3.48/yr	\$44.7	\$1.74/yr	

Vaporiser		Cogeneration		Compressed Air		
(\$M)	CAPEX	OPEX	CAPEX	OPEX	CAPEX	OPEX
BAC	\$31.4	\$3.22/yr	\$31.4	\$3.22/yr	\$37.5	\$4.46/yr
CRYO	\$31.9	\$3.48/yr	\$44.7	\$1.74/yr	\$45.9	\$2.47/yr

Vaporiser		Cogeneration		Compressed Air		
(\$M)	CAPEX	OPEX	CAPEX	OPEX	CAPEX	OPEX
BAC	\$31.4	\$3.22/yr	\$31.4	\$3.22/yr	\$37.5	\$4.37/yr
CRYO	\$31.9	\$3.48/yr	\$44.7	\$1.74/yr	\$45.9	\$2.47/yr
20 year NPV Calculated at a discount rate of 10% (\$M)						
BAC	-\$58.80		-\$58.80		-\$75.48	
CRYO	-\$61.60		-\$59.52		-\$66.90	

	Vaporiser		Cogeneration		Compressed Air	
(\$M)	CAPEX	OPEX	CAPEX	OPEX	CAPEX	OPEX
BAC	\$31.4	\$3.22/yr	\$31.4	\$3.22/yr	\$37.5	\$4.37/yr
CRYO	\$31.9	\$3.48/yr	\$44.7	\$1.74/yr	\$45.9	\$2.47/yr
20 year NPV Calculated at a discount rate of 10% (\$M)						
BAC	-\$:	58.80	-\$58.80		-\$75.48	
CRYO	-\$61.60		-\$59.52		-\$66.90	
Percent of Plant Capacity Required for Mine Chilling						
Mine	31%		55%		61%	
Surplus	6	9%	45%		39%	

Effect of adding heat to airflow and the impact of Chilling on Demand on the 3300 m level for a flow of 50 m³/s at an initial temperature of 12/12 DB/WB°C

Heat added	kW	Temperature DB/WBºC	WBGT
Base amount	1100	25.9/25.2	25.5
+ 1 LHD	180	28.2/27.4	27.7
+ 2 LHD	360	30.5/29.6	29.8
+ 3 LHD	540	32.7/31.8	32.1

Increasing the cryogenic liquid air flow from 8.1 kg/s to 8.7 kg/s raises the chilling power from 3.73 MW_r to 4.0 MW_r

Total heat164028.7/27.7283300 level: the mass flow is 78.7 kg/s and density is 1.574 kg/m³.

Mine Cooling Via Cryogenics Prototype Testing Results

Mine Cooling Proposal for Coleman

- 2 The capability of the cryogenic system to respond to variations in chilling
 - demand is a significant difference between the existing systems

10

Hour of day

15

20

3 - Power can also be produced from the expanding gas – a cogeneration system

5

6

Coleman Mine Required Chilling MWr

0

0

Conceptual Design for Coleman

Details of the mixing chamber where the ultra cold cryogenic liquid expands and mixes with ambient air to cool the mine

CFD Modelling for Coleman Design

Flow trajectories of a simulation for incoming air temperature of 20 C at 90 m3/s and 10 m3/s of air created from the expansion of the cryogenic liquid to illustrate the mixing.

CFD Modelling for Coleman Design

CFD of Flow vs Time 0 s to 10 s

Easy assembly Inspect Prefabricated components "building block system"

Inspection doors

Boliden

Conceptual Integration of Cryogenic Chilling with Gupex Heat Capture System

Mine Cooling Solution for Coleman

Simple Base Case Demonstration for Client Mine

- 1. Install a small liquid air plant
- 2. Liquid -196 °C enters vapouriser/heat exchanger
- 3. Air at ambient temperature exits vapouriser/heat exchanger
- 4. Heat is absorbed from airflow over vapouriser/heat exchanger
- 5. Cool air delivered to subsurface operations

Dearman Engine CanMIND Study

- Engine uses liquid air instead of Diesel
- Larger fuel storage tank
- 1/3 power --- 2/3 cooling
 - 500 kW engine provides 1 MWr (670 hp)
- Liquid fuel
- Cold pure air as exhaust
- Competitive with Diesel and Battery TCO

2021 D

£32

Study does not include load shifting for production, economies of scale or chilling created by the vehicle

Life vehicle energy vector cost

Advantages of Liquid Air Systems Applied to mining, cryogenic technology offers

- Reduced ventilation requirements
- Underground cooling on demand
- Reduced power requirements for ventilation and cooling
- Underground compressed air
- Energy storage and load shifting
- Non-diesel underground motor power providing breathable air
- Exploitation of free geothermal power
- Commercialization of a suite of marketable technologies enabling mines to use cryogenics
- Green house gas emission reductions
- A model for remote projects/communities to have reliable renewable power and water supply

Thank You

Dr. Daniel L. Cluff

Hereit A State A StateA State A State