6–11 Jun 2021
Underline Conference System
America/Toronto timezone
Welcome to the 2021 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2021!

Prediction of Alzheimer's Disease Based on Multi-Attentional Mechanisms using Brain PET Image

7 Jun 2021, 17:15
5m
Underline Conference System

Underline Conference System

Oral (Non-Student) / Orale (non-étudiant(e)) Physics in Medicine and Biology / Physique en médecine et en biologie (DPMB-DPMB) M4-2 MR and PET Imaging - Part 2 (DPMB) / Imagerie RM et TEP - Partie 2 (DPMB)

Speaker

Yonglin Chen (Anhui University)

Description

Positron Emission Tomography (PET) Imaging of the brain might become the most effective imaging technique to predict Alzheimer's disease. However, the definition of the brain in PET images is low and the lesion area is not easy to define, so the accuracy of traditional machine learning algorithms in predicting Alzheimer's disease from PET images is low. Deep learning algorithms can effectively improve the accuracy of prediction. Here, a deep learning model based on multi-attention mechanisms is constructed for the prediction of Alzheimer's disease. Firstly, in order to improve the images and reduce the loss of spatial information caused by convolution, a soft-attention mechanism was introduced to embed non-local modules and CBAM modules into the prediction model, which effectively solved the problems of the lack of detail information and the lack of connection between channels in PET images after deep convolution. Secondly, a split-attention mechanism was introduced, and the influence of different parameters of feature images with different sizes on the prediction accuracy was enhanced by using a packet network. Finally, head movement correction, image registration, craniocerebral separation, Gaussian smoothing and other image preprocessing were performed on the acquired PET images to effectively improve the image features of Alzheimer's disease focal areas in brain PET images. The experimental results showed that the prediction accuracy, sensitivity and specificity of the model in the ADNI database for Alzheimer's disease were 90.5%, 86.1% and 93.5% respectively, which could provide more accurate diagnostic results compared with the existing methods.

Primary authors

Yonglin Chen (Anhui University) Gong Zhang (Anhui University) Andrew Goertzen (University of Manitoba) Huabin Wang (Anhui University) Xuejun Li (Anhui University) Junling Xu (Henan People’s Hospital) Qiang Zeng (301 Hospital) Qiang Zhang (301 Hospital) Melanie Martin (University of Winnipeg) Liang Tao (Anhui University)

Presentation materials

There are no materials yet.