6–11 Jun 2021
Underline Conference System
America/Toronto timezone
Welcome to the 2021 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2021!

(G*) Broadband and high sensitivity THz system with grating-assisted noncollinear phase-matching

7 Jun 2021, 16:12
4m
Underline Conference System

Underline Conference System

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Atomic, Molecular and Optical Physics, Canada / Physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) M3-1 Nonlinear and Quantum Optics (DAMOPC) / Optique non linéaire et optique quantique (DPAMPC)

Speaker

Wei Cui (University of Ottawa)

Description

Time-domain terahertz (THz) spectroscopy has been widely exploited in studying semiconductors, superconductors, topological insulators, and metal-organic frameworks. A high-sensitivity THz system can resolve weak spectroscopic features and a broadband system allows experimentalists to rely on additional spectral information to investigate novel phenomena in materials. In a standard configuration relying on difference frequency mixing to generate and detect THz radiation, the spectroscopy signal can be improved by increasing the nonlinear interaction length inside a nonlinear crystal. However, the accessible spectral bandwidth is then limited by phase-matching conditions. Here we demonstrate a time-resolved THz system relying on noncollinear THz generation and detection schemes in thick nonlinear crystals to perform high-sensitivity and broadband spectroscopy. This concept relies on a phase grating etched on the front surface of two 2-mm thick gallium phosphide (GaP) crystals (THz generation and detection crystals) to diffract the incident near-infrared pulses. Our scheme exploits the long interaction length in these crystals to improve the signal strength and dynamic range in the system. In addition, the noncollinear geometry yields optimizable phase-matching conditions to access a broad spectral bandwidth. We compare our results with those obtained with a traditional broadband collinear system using a pair of thin GaP crystals without gratings. The noncollinear geometry shows a significant increase of the maximum signal amplitude, by a factor of 20, while also achieving a large spectral bandwidth reaching up to 7 THz. We also achieve a dynamic range above 80 dB between 1.1 and 4.3 THz. Our concept could be extended to other nonlinear crystals besides GaP to improve THz generation and detection in different spectral regions. In conclusion, this work paves the way towards high-sensitivity THz spectroscopy over a broad bandwidth in low power experiments and could enable high-field THz generation above 3 THz.

Primary author

Wei Cui (University of Ottawa)

Co-authors

Dr Kashif Awan (Stewart Blusson Quantum Matter Institute) Prof. Ksenia Dolgaleva (School of Electrical Engineering and Computer Science, University of Ottawa) Prof. Jean-Michel Ménard (Department of Physics, University of Ottawa)

Presentation materials

There are no materials yet.