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Hadron Resonance Gas vs Lattice QCD
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m Pressure in the HRG: PHRG(T, UBs LS LQ) = Z Pideal(T,,u,-; m;)
i€had
m HRG describes well LQCD equation of state and some fluctuation observables up to ~ T,

m Rapid breakdown around T in kurtosis — changeover to QGP

2/11



Parity Doubling in Lattice QCD ' auns et a1, s1EP 1706, 034 (2017)
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m imprint of chiral symmetry restoration in the baryonic sector
m general tendency: N - constant; N~ - dramatic drop of mass toward chiral crossover
m chiral partners NE stay massive around T,

m in-medium effects — mass shifts — input for HRG
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In-medium Hadron Resonance Gas vs Lattice QCD

B parity doubling improves the agreement of
HRG with LQCD Aarts et al. (2018)

m agreement is only accidental with only

mass shifts in HRG Morita et al. (2018)

m excluded volume and van der Waals HRG
improve the agreement with LQCD

m deviations from HRG baseline — repulsive
hadron intractions Vovchenko et al. (2017)
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To what extent the behavior is dominated by the chiral criticality and repulsive interactions?

What are the origins of the structures present in higher-order cumulants?
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Delineating in-medium effects in higher—order cumulants in ¢ — w model

= 46

m Cumulants of the net-baryon number: x, = o
g

T

m In the mean-field approx.: ng = ng(T, pug,o(T,ug),w(T, ug))

m General structure of the second-order cumulant:

; ong Oo -0 )
d ong KB d
X2 = Xlz ﬂrep e e 12 ﬁrep
do a,u,B \
attractiv repulsive

m At ug =0 — x33(T,0) - HRG with in-medium masses due to chiral restoration (cHRG)

ow . . .
Brep =1—gu 3 - suppression factor due to repulsive interactions
12223

m Approximations for higher orders and ratios:

id

X Xn .
Xn R X8I + X—”Nxfddpppm+...
m m
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Parity Doubling in SU(2) Chll’a| Models DeTar, Kunihiro PRD 39 (1989)
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chiral symmetry restoration — exchange of o meson

repulsive interactions — exchange of w meson

m mean field approximation for chiral criticality

thermodynamic potential: Q = g Qr + Vo + Vg,
x=%
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Second-order

m HRG - non-critical baseline

= HRG ¥ SHRG

m qualitative differences in x2 — repulsive
interactions

+repulsion

Parity Doublet

X2 = Xlzd Brep

m repulsion becomes more important with
increasing temperature

m at Tc: Brep ~ 0.8 — x2 reduced by 20%
m repulsion more readily exposed in
higher-order cumulants: x, ~ 3" 1

m estimated suppresion of x4 and e is 41%
and 67%, respectively

cumulant

0.4

' MRG —-=
oHRG
F Parity Doublet
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Approximations for higher-order cumulants
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X2 = xizdﬁrep is exact — errors in ratios come from x4 and x¢
m reasonable agreement up to ~ 1.1 T,

m qualitative structure is preserved
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Ratios of higher-order cumulants: kurtosis and x6/x2

interactions — strong deviations from the HRG baseline

- " HRG —-- 15F , HRG —-= |
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10 F ’

Xo/X2

T[T, T[T

m structure dictated by the chiral symmetry ® x4/x2 and x6/x2 suppressed by repulsion,

m no chiral-critical behavior encoded in 3 but qualitative structure the same
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Comparison with excluded volume HRG
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A
K < m qualitatively different structure of the ratios
SR Y I o i .
- ~oi m excluded Volume HRG - strong suppression due to
' . .
Y hadronic interactions
\ m x4/X2 - reduced from Skellam as seen in LQCD
N m X6/X2 - fails to capture the characteristic properties
ol R -
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(1) m structure of xe/x2 persists when mesonic
s ﬁmtybo%‘m AT fluctuations included, e.g., in FRG and in LQCD
L Doublet =<~ \ ]
\ Friman et al (2011); Borsanyi et al (2018); Bazavov et al (2020)
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m repulsive interactions are insufficient — consistent framework with chiral effects and
repulsive interactions needed.
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Conclusions

Interplay between chiral dynamics and repulsive interactions at pug = 0:
m higher-order cumulants are sensitive to hadronic interactions

m factorization of x2 — (attractive) X (repulsive)
m approximation for higher orders

m repulsive interactions become readily exposed in the structure of the higher-order
cumulants

m excluded volume model fails to reproduce dominant chiral critical behavior

m consistent framework with chiral effects and repulsive interactions needed.

Thank You
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Parity Doubling for Light Baryons aus cta, pro 99 (2019)
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m(Dim,(T,)

Parity Doubling for Light Baryons aus cta, pro 99 (2019)
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Friman et al, EPJC (2011)

X6/X2 in FRG and LQCD
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