First results of $\binom{3}{\Lambda}H, \stackrel{4}{\Lambda}H$ (*dN/dy*, $c\tau$, v_1) from 3 GeV Au+Au collisions with the STAR detector

Yue-Hang Leung for the STAR collaboration

Lawrence Berkeley National Laboratory

CPOD2021 - International Conference on Critical Point and Onset of Deconfinement

Supported in part by:

Introduction

- Hypernuclei -> experimental probe to study the hyperon-nucleon (YN) interaction
 - Modeling the EOS of astrophysical objects
 - Lifetime, branching ratios, and binding energy measurements provide key information to understand the YN potential
- ${}^{3}_{\Lambda}$ H (Λpn) is the lightest hypernuclei
 - Binding energy~0.4 MeV

CPOD2021

STAR

 Theory predicts lifetime close to the free lambda lifetime

- Few measurements of ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ in heavy-ion collisions
 - Yield and flow -> insight on the production mechanisms and hyperon contribution to the EoS

STAR BES-II

- Higher baryon density at lower beam energies
 - STAR BES-II -> great opportunity to study hypernuclei production

STAR Fixed-target Experiment Setup

CPOD2021

STAR

STAR fixed target mode

Hypernuclei reconstruction and acceptance

*M. Zyzak, "Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR", thesis, urn:nbn:de:hebis:30:3-414288

Lifetime measurements

• Yields of Λ , ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ as a function of $L/\beta\gamma$

- Well described by exponential functions $N(t) = N_0 e^{-L/\beta\gamma c\tau}$
- Lifetime extracted with χ^2 fit
- Extracted Λ lifetime $(265.0 \pm 2.2)[ps]~$ consistent with PDG value $(263.1 \pm 2.0)[ps]~$

Systematic uncertainties on the lifetime

- (1) Analysis cuts
 - Imperfect description of topological variables between simulations and real data
- (2) Input MC p_T/rapidity/lifetime
 - Imperfect knowledge in the real kinematic distributions of the hypernuclei
- (3) Single track efficiency
 - Mismatch of single track efficiency between simulations and data
- (4) Signal extraction
 - Uncertainties related to the background subtraction technique

syst. uncertainty	$^{3}_{\Lambda}\mathrm{H}$	$^4_{\Lambda}{ m H}$
Analysis cuts	9.7%	5.0%
Input MC	9.1%	1.3%
Tracking efficiency	7.7%	1.1%
Signal extraction	3.8%	0.9%
Total	15.8%	5.4%

<u>Table: Syst. uncertainty for ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ lifetime</u>

New results on ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ lifetime

CPOD2021

STAR

- ${}^4_{\Lambda}$ H :
 - Most precise measurement to date.
 - Consistent with previous measurements.

 Consistent with theoretical calculations including pion FSI.

> NC46(1966)786 (Dalitz et al) JPG NPP 18(1992)339 (Congleton) PRC57(1998)1595 (Kamada et al) PLB791(2019)48 (Gal et al)

$^{3}_{\Lambda}H$ and $^{4}_{\Lambda}H$ pT spectra

Systematic uncertainties on the spectra

- Additional sources of systematic uncertainties considered:
- <u>Extrapolation</u>
 - Different functions for extrapolation to estimate uncertainty
 - m_T exponential, blast wave, Boltzmann, etc.
- <u>Target material</u>
 - Took into account possible Coulomb dissociation when traversing target material

Physics of Atomic Nuclei, 2007, Vol. 70, No. 9, pp. 1617-1622

 Survival probability >95% in kinematic regions analyzed

*Target thickness = 0.25mm

syst. uncertainty	$^{3}_{\Lambda}\mathrm{H}$	$^4_{\Lambda}{ m H}$
Analysis cuts	19.3%	4.1%
Input MC	10.0%	4.0%
Tracking efficiency	3.7%	2.9%
Signal extraction	6.0%	4.0%
Extrapolation	11.8%	12.8%
Detector material	4.0%	< 1%
Total	26.0%	14.9%
Branching ratio	40.0%	20.0%

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H dN/dy at $\sqrt{s_{NN}} = 3$ GeV

• First measurement of dN/dy of hypernuclei in HI collisions

• Different trends in the ${}^4_{\Lambda}H$ rapidity distribution in central (0-10%) and mid-central (10-50%) collisions

PRC57(1998)1595 NPA585(1995) 365c NPA639(1998) 251c

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H |y|<0.5 yield vs beam energy

 Thermal model (GSI-Heidelberg) which adopts the canonical ensemble, describes ³_AH yield at 3 GeV

CPOD2021

STAR

• Yield of ${}^{4}_{\Lambda}H$ not described by coalescence (DCM) model

PLB714(2012),85 (Hybrid URQMD, Coalescence(DCM))

PLB 697 (2011)203 (Thermal Model)

PLB 754 (2016)360 (ALICE)

Directed flow of hypernuclei $~^3_{\Lambda H}$ and $~^4_{\Lambda H}$

- We use the event plane method to extract the v_1 of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$
 - 1st order event plane angle measured by Event Plane
 Detector (EPD) (-5.3 < η < -2.6)
 - Event plane resolution *R*₁ from 3-sub-event method

STAR

CPOD2021

Directed flow of hypernuclei ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$

• First observation of hypernuclei collectivity v_1 in HI collisions.

CPOD2021

STAR

- v_1 slope follow baryon number scaling in 5-40% 3 GeV Au+Au collisions
 - Results consistent with hypernuclei production from coalescence of hyperons and nucleons

Summary and Outlook

- Established new directions in the study of HI collisions
 - First measurement of hypernuclei dN/dy in HI collisions
 - Different trends in the $^4_{\Lambda}H$ rapidity distribution in central (0-10%) and mid-central (10-50%) 3 GeV Au+Au collisions
 - Thermal model describes ${}^3_{\Lambda}H$ yield, while coalescence (DCM) model does not describe ${}^4_{\Lambda}H$ yield.
 - First observation of hypernuclei collectivity v1 in HI collisions
 - v_1 slope of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ follow baryon number scaling in 5-40% collisions.
 - Improved precision on ${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$ lifetimes
- BES-II + FXT : $\sqrt{s_{NN}} = 3 20$ GeV

CPOD2021

STAR

• Energy dependence, heavier hypernuclei, S=2 hypernuclei, etc.

Moving towards a quantitative understanding of QCD matter in the high baryon density region

Thank you for listening!