QCD phase structure

Functional QCD

 $(135\,,\,450\,)\,{\rm MeV} \lesssim (T_{_{\rm CEP}}\,,\,\mu_{B_{_{\rm CEP}}}) \lesssim (100\,,\,650)\,{\rm MeV}$

Suggests: no criticality for $rac{\mu_{\mathbf{B}}}{T_{\mathbf{c}}}\lesssim 4$

- **fRG:** <u>Fu, JMP, Rennecke, PRD 101, (2020) 054032</u>
- DSE: Fischer, PPNP 105 (2019) 1, Gao, JMP, arXiv:2010.137005

by courtesy of Fabian Rennecke

SIZE OF THE CRITICAL REGION

• mean-field PQM: critical region $\leq 10 \,\text{MeV}$ (tangential to transition line (A)) [Schaefer, Wagner (2012)]

• including quantum fluctuations: critical region shrinks to < 1 MeV in T and μ_B direction

[Schaefer, Wambach (2006)] [Chen, Wen, Fu (2021)]

by courtesy of Fabian Rennecke

VALIDITY OF THE TAYLOR EXPANSION

• estimate of location of 2nd order phase transition based on Taylor expansion about $\mu = 0$ for different expansion orders n

very high orders necessary for good estimates

[Karsch, Schaefer, Wagner, Wambach (2011)]

• Taylor expansion about $\mu_B = 0$ vs direct computation

Taylor expansion fails to capture qualitative features at finite μ_B

[Fu, Luo, Pawlowski, Rennecke, Wen (2021)]

Scaling analysis from functional QCD

Braun, Fu, Pawlowski, Rennecke, Rosenblüh, Yin, PRD 102 (2020) 056010

- Very good agreement with lattice QCD results from the hotQCD collaboration around physical pion masses and above
- Susceptibilities do not show indications for scaling for $m_\pi\gtrsim 30\,{
 m MeV}$

Size of the scaling region: quark-meson model

Braun, Klein, Piasecki, EPJ C 71 (2011) 1576

- $\bullet\,{\rm Size}$ of the true scaling region: $m_\pi \lesssim 1\,{\rm MeV}$
- "Seeming" scaling region: $75 \,\mathrm{MeV} \lesssim m_\pi \lesssim 200 \,\mathrm{MeV}$

Critical region near the CEP with Z(2) symmetry

Chen, Wen, Fu, arXiv: 2101.08484

- Critical exponent β is close to the CEP
- Critical region (in temperature direction) smaller than 1 MeV!

See also: <u>Schaefer, Wambach, PRD 75 (2007) 085015</u> <u>Schaefer, Wagner, PRD 85 (2012) 034027</u>

by courtesy of Bernd-Jochen Schaefer

Critical region from RG flows

 Contour regions for quark number susceptibility

(chiral limit: TCP physical pion mass: CEP)

- Critical region around CEP
 - criticality depends on the path towards CEP
 - crossover between different universality classes

by courtesy of Bernd-Jochen Schaefer

Size of the critical region: quark-meson model

[B.-J. Schaefer, J. Wambach, Phys. Rev. D 75 (2007)]

BES Results from RHIC-STAR, CPOD2021, 15-19/Mar, Online

17

Critiacl Fluctuations

- what happens in the STAR BES fixed target region?
- is behavior of the cumulants at low energies dominated by hadronic effects and the nuclear liquid-gas phase transition?
- can we study c_T^2 below $\sqrt{s} = 2.4$ GeV?

Agnieszka Sorensen (UCLA/LBNL)

CPOD 2021

Isentropic Trajectories

- Isentropes show the path of the HIC system through the phase diagram in the absence of dissipation
 - Different path when conserved charge conditions applied

JS et al, <u>arXiv:2103.08146</u> **16**

Fluctuations on the freeze-out curve

J. Adam *et al.* (STAR), *PRL* 126 (2021), 092301 M. Abdallah *et al.* (STAR), arXiv:2101.12413 T. Nonaka (STAR), *NPA* 1005 (2021) 121882; A. Pandav (STAR), arXiv: *NPA* 1005 (2021) 121936

Ratios of cumulants: STAR data versus model

 Broken lines calculated from

Skellam distribution

- $\frac{\kappa_1}{\kappa_1} = \frac{\kappa_3}{\kappa_2} = \frac{\langle p p \rangle}{\kappa_2}$
- $\kappa_2 \quad \kappa_2 \quad < p+p >$
- Open circle include MC volume fluctuations
 - P. Braun-Munzinger, A. Rustamov and J.
 Stachel, Nucl. Phys. A960, 114 (2017).
 V. Skokov, B. Friman and K. Redlich, Phys. Rev. C88, 034911 (2013)
- Cumulants up to n<4 order follow the SATR data
- Kurtosis data exhibit interesting deviations, however not necessarily of statistical significant

Dynamics: time evolution of critical fluctuations

- shift of extrema for variance/kurtosis (retardation effects) to later times corresponding to T(τ) < T_c
- |extremal values| in dyn simulations < equilibrium values (nonequilibrium effects):

$$(\sigma_V^2)_{
m dyn}^{
m max} \approx 0.75 \, (\sigma_V^2)_{
m eq}^{
m max}$$

 $(\kappa \sigma^2)_V)_{
m dyn}^{
m min} \approx 0.5 \, (\kappa \sigma_V^2)_{
m eq}^{
m min}$

• expected behavior with varying D and c_s^2 (expansion rate)

MN, M. Bluhm, T. Schaefer, S. Bass, PRD99 (2019), MN, M. Bluhm, PRD102 (2020)

<u>CPOD2021 talk Derek Teaney: A review of the recent developments in the hydrodynamics of critering</u>

The conductivity through T_c

Estimate of the absolute magnitude for $\sigma_{I\infty}^{\rm pc}$ with $T_{\rm pc}\simeq 155\,{\rm MeV}$

$$\Delta D_I = \left(\frac{\Delta \sigma_I}{\chi}\right) = \frac{0.50}{2\pi T} \times \left(\frac{1.3}{m_{\rm pc}/T}\right) \left(\frac{0.4}{\chi_Q/T^2}\right) \left(\frac{3.0}{2\pi T D_m}\right)$$

Teaney

19 / 25

Critical slowing down and advection

Turning off radial flow

Turning on radial flow

Time evolution of baryon diffusion current

- With the fireball cooling down, the driving force of diffusion current ($\kappa_n \nabla(\mu/T)$) decreases:
 - Two reasons: (a) gradient $\nabla(\mu/T)$ gets smoothened; (b) κ_n decreases.
- Response to the driving force also gets slower, because of the growing relaxation time;
- Critical slowing-down ($\tau_n \simeq 6 \tau_{n,0}$) would help n^{η} to stay at (almost) zero, even if $\kappa_n \nabla(\mu/T)$ got affected by the critical point.

Including non-linear coupling : Variance and Kurtosis

Grégoire Pihan - C.P.O.D 2021 - 17 mars 2021

CPOD2021 talk Ashish Pandav: Beam energy dependence of fifth and sixth order cumulants and factorial cumulants of net-proton and proton distributions in Au+Au collisions from BES-I program at RHIC-STAR

PHYSICAL REVIEW C100, 051902(R) (2019)

 κ_5 (0-5%) consistent with two component model expectation within uncertainties while κ_6 (0-5%) remains 1.8 σ away. The ratios κ_5/κ_4 and κ_6/κ_5 (0-5%) consistent with zero.

CPOD2021-Ashish Pandav

Ratios of higher-order cumulants: kurtosis and χ_6/χ_2

interactions \rightarrow strong deviations from the HRG baseline

- structure dictated by the chiral symmetry
- \blacksquare no chiral-critical behavior encoded in β
- χ_4/χ_2 and χ_6/χ_2 suppressed by repulsion, but qualitative structure the same

Exclusion plot

Comparison with simple power-law model

CPOD2021, 19.03.2020