Flight distance

1P.

muon

LHCbatata analysis

T. Blake

Warwick Monash Alliance meeting 15th of December 2020

muon

Dion

Overview

Rare FCNC decays

Flavour changing neutral current transitions only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

New particles can also contribute:

Enhancing/suppressing decay rates, introducing new sources of *CP* violation or modifying the angular distribution of the final-state particles.

Branching fraction measurements

• We already have precise measurements of branching fractions in the run1 datasets with at least comparable precision to SM expectations:

- SM predictions have large theoretical uncertainties from hadronic form factors (3 for $B\rightarrow K$ and 7 for $B\rightarrow K^*$ decays).
- For details see **[Bobeth et al JHEP 01 (2012) 107], [Bouchard et al. PRL111 (2013) 162002], [Altmannshofer & Straub, EPJC (2015) 75 382]**.

Angular observables

• Get improved sensitivity by considering angular observables in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay.

ASBZ [JHEP 08 (2016) 98], DHMV [JHEP 1204 (2012) 104], ATLAS [\[JHEP 10 \(2018\) 047](https://link.springer.com/article/10.1007/JHEP10(2018)047)], Belle [PRL 118 (2017) 111801], CMS [\[PLB 781 \(2018\) 517](https://www.sciencedirect.com/science/article/pii/S0370269318303149)], LHCb [[PRL 125 \(2020\) 011802](https://doi.org/10.1103/PhysRevLett.125.011802)]

• At low q^2 , see some tension between the data and the SM predictions.

$b \rightarrow s \mu^+ \mu^-$ interpretation **Schore External conduction conduction in the right of the set of th**

- Data favour either:
	- \blacktriangleright Modified C_9 ;
	- \blacktriangleright Modified C_9 and C_{10} (consistent with $\Delta C_9 = - \Delta C_{10}$. *Cbsµµ* 10
- Dashed lines correspond to the previous Run 1 analysis.

From Talk by P. Stangl **[[https://conference.ippp.dur.ac.uk/event/876\]](https://conference.ippp.dur.ac.uk/event/876)**

7

Extending the programme

- How well do we understand the SM predictions?
	- The spectrum in the data is complicated by resonance contributions.
	- \blacksquare Motivates using q^2 -dependent models *e.g.* isobar models **[EPJC 78 [\(2018\)](https://link.springer.com/article/10.1140/epjc/s10052-018-5937-3) 6]** or parametric expansions **[\[arXiv:2011.09813\]](https://arxiv.org/abs/2011.09813)**.

Extending the programme

- Are similar effects seen in $b \to d\mu^+\mu^-$ transitions?
	- Further suppressed by the small size of $|V_{td}|$ in the SM, could have increased sensitivity to BSM effects if the underlying theory doesn't have the same flavour structure as the SM.
	- ‣ Can get visible *CP* violating effects due to large weak phase differences (charmonium resonances and light-quark resonances provide sources of strong phase difference).
- Are similar effects seen in b -baryon transitions?

Hadronic *B* decays

- Extensive expertise in Warwick at carrying out so-called Dalitz plot analysis of decays with three pseudoscalars in the final state.
- Primary interest of the ongoing work is on studies of *CP* violation and hadron spectroscopy.
- We could also constrain charmonium contributions in rare b -hadron decays using information form hadronic $B \rightarrow D\bar{D}K$ decays.
- The $B^+ \to D^+D^-K^+$ analysis was carried out using Laura++ with Warwick involvement.

Charmonium states in **[[PRD102 \(2020\) 112003\]](https://doi.org/10.1103/PhysRevD.102.112003)** *B*⁺ → *D*⁺*D*[−]*K*⁺

Hadronic *B* decays

- At Warwick we are also actively involved in measurements of:
	- γ using $B \to D K \pi$ decays.
	- ϕ *β* using $B \to D \pi \pi$ decays.
	- CP violation in 3-body b-hadron decays $(e.g. in B^+ \to \pi^+\pi^-\pi^+ \text{ or } B \to K_S^0 h^+h^- \text{ decays}).$

$$
\longrightarrow \beta_s \text{ in } B_s^0 \longrightarrow K^{*0} \bar{K}^{*0} \text{ decays.}
$$

Lepton Universality Tests

• Theoretical uncertainties cancel ratios of decay rates between decays with dimuon and dielectron final-states:

LHCb [\[PRL 122 \(2019\) 191801](https://doi.org/10.1103/PhysRevLett.122.191801)], [\[JHEP 08 \(2017\) 055](https://doi.org/10.1007/JHEP08(2017)055)], BaBar [PRD 93 (2016) 052015], Belle [\[arXiv:1908.01848](http://arxiv.org/abs/arXiv:1908.01848)].

• LHCb data are approximately 2.5 σ from SM expectations at low q^2

Lepton Universality Tests

- Theoretically clean but experimentally challenging due to FSR and Bremsstrahlung from the electrons.
	- Need to unfold the measured distribution to compare rates in a region of q^2_\perp
	- Rely on GEANT4 to describe Bremsstrahlung due to detector material.
	- Rely on PHOTOS to describe QED emission.
- We are involved at Warwick in efforts to measure R_ϕ in $B^0_s \to \phi \ell^+ \ell^$ decays.

Electroweak precision tests

- Ongoing effort measure m_{W} , from the $p_{\rm T}$ spectrum of μ^\pm from W^\pm . $p_{\rm T}$ spectrum of μ^{\pm} from W^{\pm}
- Targeting an experimental precision of $\mathcal{O}(10\,\mathrm{MeV}/c^2)$.
- Profit from unique coverage of the LHCb detector and correlations between PDF sets in different pseudorapidity ranges to get an improved measurement of $m_W^{}$

[\[EPJ C75 \(2015\) 601\]](http://dx.doi.org/10.1140/epjc/s10052-015-3810-1).

 $R_{\rm eff}$ the full PDF uncertainty showledge of $P_{\rm eff}$ showledge of $P_{\rm eff}$ showledge of $P_{\rm eff}$

Electroweak precision tests

- Use fixed-order QCD calculations to describe rapidity and angular distribution of the W^{\pm} bosons.
- Non-perturbative effects are important rely on parton showering.
- The p_{T} spectrum is sensitive to PYTHIA parameters. • ATLAS tune the parameters based on the $p_{\rm T}$ spectrum of Z bosons **[[EPJC 78 \(2018\) 110](https://dx.doi.org/10.1140/epjc/s10052-017-5475-4&v=76613ef5)]**. 10^{-1} 10^{0} 10^{1} 10^{2} $p_{\textrm{T}}^{\textrm{W}}$ [GeV/*c*] $0.0 - 1$ 0*.*2 0*.*4 0*.*6 0*.*8 1*.*0 $\overline{}$ $\overline{}$ el
প্ৰ $\frac{1}{T}$ [Arbitrary units] W^+ $k_T^{\text{intr.}} = 1.0$ $\alpha_s = 0.120$ $= 0.127$ $\alpha_s = 0.133$ $\alpha_s = 0.140$ 10^{-1} 10^{0} 10^{1} 10^{2} $p_{\textrm{T}}^{\textrm{W}}$ [GeV/*c*] W^{+} $\alpha_{s} = 0.133$ $k_{\rm T}^{\rm intr.}=0.5$ $k_{\rm T}^{\rm intr.}=1.0$ $k_{\rm T}^{\rm intr.}=1.5$ $k_{\rm T}^{\rm intr.} = 2.0$ **MV [arXiv:1907.09958]**

look very similar, are shown in Appendix B.

• Also sensitive to effects from FSR (QED) radiation, currently modelled using PHOTOS.

Deuteron production

- Measure deuteron production rates in pp , heavy ion, p -ion and fixed target collisions.
	- ‣ Use PID capability of the RICH detectors to separate deuterons from other charged particle species.
- This could have an interesting overlap with work at Warwick on the TORCH detector, a proposed time-of-flight detector for a future upgrade of LHCb.

Overview

Effective theory

• Can write a Hamiltonian for an effective theory of *b*→*s* processes:

Wilson coefficient (integrating out scales above μ)

e.g MFV inherits SM CKM

suppression.

Local 4 fermion operators with different Lorentz structures

$$
\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu) O_i(\mu),
$$

$$
\Delta \mathcal{H}_{\text{eff}} = \frac{\kappa_{\text{NP}}}{\Lambda_{\text{NP}}^2} O_{\text{NP}}
$$

NP scale
NP can modelly
SNr can have all/some/none
of the suppression of the SM, new operators

c.f. Fermi theory of weak interaction where at low energies:

$$
\lim_{q^2 \to 0} \left(\frac{g^2}{m_W^2 - q^2} \right) = \frac{g^2}{m_W^2}
$$

i.e. the full theory can be replaced by a 4 fermion operator and a coupling constant, *G*F.

Operators

- Different processes are sensitive to different 4-fermion operators.
	- Can exploit this to over-constrain the system.

 $\mathcal{O}_7 = (m_b/e) \left(\bar{s} \sigma^{\mu \nu} P_R b F_{\mu \nu}\right)$ $\mathcal{O}_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell)$ \mathcal{O}_1 ⁰ = ($\bar{s}\gamma_\mu P_L b$)($\bar{\ell}\gamma^\mu \gamma_5 \ell$) $\mathcal{O}_S = (\bar{s} P_R b)(\bar{\ell}\ell)$ $\mathcal{O}_P = (\bar{s}P_Rb)(\bar{\ell}\gamma_5\ell)$ photon (constrained by radiative decays and *b*→*s* l ⁺ l ⁻ processes at small q ²) vector current (constrained by *b*→*s* $l + l$ ⁻ processes) axial vector current (constrained by leptonic decays and *b*→*s* ℓ ⁺ ℓ ⁻ processes) scalar and pseudoscalar operators (constrained primarily by leptonic decays) } **} }**

Can also have right-handed counterparts of the operators whose contribution is small in the SM.