Flight distance

IP Ĵ

muon

LHCb data analysis

T. Blake

Warwick Monash Alliance meeting 15th of December 2020

muon

Dion

Overview

Warwick activities	Monash activities
Rare b -hadron decays (тв, мк, аw)	Rare b -hadron decays (UE, TH)
<i>CP</i> violation in charmless and open charm <i>B</i> hadron decays (тG, тL, мк)	
Precision EW measurements (MV, MRP)	
Semileptonic <i>B</i> decays (мv, мк)	
	Deuteron production (UE)
	Searches for (apparently) baryon number violating decays (UE)

Rare FCNC decays

• Flavour changing neutral current transitions only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

• New particles can also contribute:

Enhancing/suppressing decay rates, introducing new sources of *CP* violation or modifying the angular distribution of the final-state particles.

Branching fraction measurements

• We already have precise measurements of branching fractions in the run1 datasets with at least comparable precision to SM expectations:

- SM predictions have large theoretical uncertainties from hadronic form factors (3 for B→K and 7 for B→K* decays).
- For details see [Bobeth et al JHEP 01 (2012) 107], [Bouchard et al. PRL111 (2013) 162002], [Altmannshofer & Straub, EPJC (2015) 75 382].

Angular observables

• Get improved sensitivity by considering angular observables in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay.

ASBZ [JHEP 08 (2016) 98], DHMV [JHEP 1204 (2012) 104], ATLAS [JHEP 10 (2018) 047], Belle [PRL 118 (2017) 111801], CMS [PLB 781 (2018) 517], LHCb [PRL 125 (2020) 011802]

• At low q^2 , see some tension between the data and the SM predictions.

$b \rightarrow s \mu^+ \mu^-$ interpretation

- Data favour either:
 - Modified C_9 ;
 - Modified C_9 and C_{10} (consistent with $\Delta C_9 = -\Delta C_{10}$).
- Dashed lines correspond to the previous Run 1 analysis.

From Talk by P. Stangl [https://conference.ippp.dur.ac.uk/event/876]

Extending the programme

- How well do we understand the SM predictions?
 - The spectrum in the data is complicated by resonance contributions.
 - Motivates using q²-dependent models *e.g.* isobar models
 [EPJC 78 (2018) 6] or parametric expansions [arXiv:2011.09813].

Extending the programme

- Are similar effects seen in $b \rightarrow d\mu^+\mu^-$ transitions?
 - Further suppressed by the small size of $|V_{td}|$ in the SM, could have increased sensitivity to BSM effects if the underlying theory doesn't have the same flavour structure as the SM.
 - Can get visible CP violating effects due to large weak phase differences (charmonium resonances and light-quark resonances provide sources of strong phase difference).
- Are similar effects seen in *b*-baryon transitions?

Hadronic B decays

- Extensive expertise in Warwick at carrying out so-called Dalitz plot analysis of decays with three pseudoscalars in the final state.
- Primary interest of the ongoing work is on studies of *CP* violation and hadron spectroscopy.
- We could also constrain charmonium contributions in rare *b*-hadron decays using information form hadronic $B \rightarrow D\bar{D}K$ decays.
- The $B^+ \rightarrow D^+ D^- K^+$ analysis was carried out using Laura++ with Warwick involvement.

Charmonium states in $B^+ \rightarrow D^+ D^- K^+$ [PRD102 (2020) 112003]

Hadronic B decays

- At Warwick we are also actively involved in measurements of:
 - γ using $B \to DK\pi$ decays.
 - β using $B \to D\pi\pi$ decays.
 - *CP* violation in 3-body *b*-hadron decays (*e.g.* in $B^+ \to \pi^+ \pi^- \pi^+$ or $B \to K^0_S h^+ h^-$ decays).

•
$$\beta_s \text{ in } B_s^0 \to K^{*0} \bar{K}^{*0}$$
 decays.

Lepton Universality Tests

• Theoretical uncertainties cancel ratios of decay rates between decays with dimuon and dielectron final-states:

LHCb [PRL 122 (2019) 191801], [JHEP 08 (2017) 055], BaBar [PRD 93 (2016) 052015], Belle [arXiv:1908.01848].

• LHCb data are approximately 2.5 σ from SM expectations at low q^2

Lepton Universality Tests

- Theoretically clean but experimentally challenging due to FSR and Bremsstrahlung from the electrons.
 - Need to unfold the measured distribution to compare rates in a region of q^2 .
 - Rely on GEANT4 to describe Bremsstrahlung due to detector material.
 - Rely on **PHOTOS** to describe QED emission.
- We are involved at Warwick in efforts to measure R_ϕ in $B^0_s o \phi \ell^+ \ell^-$ decays.

Electroweak precision tests

- Ongoing effort measure m_W , from the $p_{\rm T}$ spectrum of μ^{\pm} from W^{\pm} .
- Targeting an experimental precision of $\mathcal{O}(10 \, {\rm MeV}/c^2)$.
- Profit from unique coverage of the LHCb detector and correlations between PDF sets in different pseudorapidity ranges to get an improved measurement of m_W

[EPJ C75 (2015) 601].

Electroweak precision tests

- Use fixed-order QCD calculations to describe rapidity and angular distribution of the W^{\pm} bosons.
- Non-perturbative effects are important rely on parton showering.
- The $p_{\rm T}$ spectrum is V [arXiv:1907.09958] • $\frac{\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}}}{0.6} [\text{Arbitrary units}]$ sensitive to **PYTHIA** $W^{+} \alpha_{s} = 0.133$ = 1.0 $- k_{\rm T}^{\rm intr.} = 0.5$ $\alpha_{s} = 0.120$ parameters. 0.8 $\alpha_s = 0.127$ $k_{\mathrm{T}}^{\mathrm{intr.}} = 1.0$ $\alpha_s = 0.133$ $k_{\mathrm{T}}^{\mathrm{intr.}} = 1.5$ $\alpha_{s} = 0.140$ $k_{\rm T}^{\rm intr.} = 2.0$ ATLAS tune the lacksquareparameters based on щЬ the $p_{\rm T}$ spectrum of Z 0.2bosons [EPJC 78 (2018) 110]. $0.0 - 10^{-1}$ 10^{-1} 10^{0} 10^{0} 10^{2} 10^{2} 10^{1} 10^{1} $p_{\rm T}^{\rm W} \, [{\rm GeV}/c]$ $p_{\rm T}^{\rm W}$ [GeV/c]
- Also sensitive to effects from FSR (QED) radiation, currently modelled using PHOTOS.

Deuteron production

- Measure deuteron production rates in *pp*, heavy ion, *p*-ion and fixed target collisions.
 - Use PID capability of the RICH detectors to separate deuterons from other charged particle species.
- This could have an interesting overlap with work at Warwick on the TORCH detector, a proposed time-of-flight detector for a future upgrade of LHCb.

Overview

Warwick activities	Monash activities
Rare b -hadron decays (тв, мк, аw)	Rare b -hadron decays (UE, TH)
<i>CP</i> violation in charmless and open charm <i>B</i> hadron decays (тG, тL, мк)	
Precision EW measurements (MV, MRP)	
Semileptonic <i>B</i> decays (мv, мк)	
	Deuteron production (UE)
	Searches for (apparently) baryon number violating decays (UE)

Effective theory

• Can write a Hamiltonian for an effective theory of $b \rightarrow s$ processes:

Wilson coefficient (integrating out scales above μ)

e.g MFV inherits SM CKM

suppression.

Local 4 fermion operators with different Lorentz structures

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}} &= -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \, \frac{\alpha_e}{4\pi} \, \sum_i \mathcal{C}_i(\mu) \mathcal{O}_i(\mu) \,, \\ \Delta \mathcal{H}_{\mathrm{eff}} &= \frac{\kappa_{\mathrm{NP}}}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_{\mathrm{NP}} \\ & \text{NP scale} \\ \kappa_{\mathrm{NP}} \, \mathrm{can \ have \ all/some/none} \\ \mathrm{of \ the \ suppression \ of \ the \ SM,} \\ \end{aligned}$$

c.f. Fermi theory of weak interaction where at low energies:

$$\lim_{q^2 \to 0} \left(\frac{g^2}{m_W^2 - q^2} \right) = \frac{g^2}{m_W^2}$$

i.e. the full theory can be replaced by a 4fermion operator and a coupling constant, $G_{\rm F}$.

Operators

- Different processes are sensitive to different 4-fermion operators.
 - ➡ Can exploit this to over-constrain the system.

 $\mathcal{O}_{7} = (m_{b}/e) \left(\bar{s}\sigma^{\mu\nu}P_{R}bF_{\mu\nu}\right)$ $\mathcal{O}_{9} = \left(\bar{s}\gamma_{\mu}P_{L}b\right)\left(\bar{\ell}\gamma^{\mu}\ell\right)$ $\mathcal{O}_{10} = \left(\bar{s}\gamma_{\mu}P_{L}b\right)\left(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\right)$ $\mathcal{O}_{S} = \left(\bar{s}P_{R}b\right)\left(\bar{\ell}\ell\right)$ $\mathcal{O}_{P} = \left(\bar{s}P_{R}b\right)\left(\bar{\ell}\gamma_{5}\ell\right)$ $\mathcal{O}_{R} = (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell)$ $\mathcal{O}_{R} = (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell)$

Can also have right-handed counterparts of the operators whose contribution is small in the SM.