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Overview

Warwick activities

Rare b-hadron decays (TB, MK, AW) ‘

Monash activities

Rare b-hadron decays (UE, TH) i

CP violation in charmless and open
charm B hadron decays (TG, TL, MK)

Precision EW measurements (Mv, MRP)

Semileptonic B decays (MV, MK)

Deuteron production (UE) \

L

Searches for (apparently) baryon
number violating decays (UE)




" Rare FCNC decays

e Flavour changing neutral current transitions only occur at loop order
(and beyond) in the SM.
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S N SM diagrams involve

- It the charged current
x interaction.

 New particles can also contribute:
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Enhancing/suppressing decay rates, introducing new sources of CP
violation or modifying the angular distribution of the final-state particles.




Branching fraction measurements

dB/dq? [10° x ¢*/GeV?]

We already have precise measurements of branching fractions in the
run1 datasets with at least comparable precision to SM expectations:
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SM predictions have large theoretical uncertainties from hadronic form
factors (3 for B—+K and 7 for B—~K* decays).

For detalls see [Bobeth et al JHEP 01 (2012) 107], [Bouchard et al. PRL111 (2013)
162002], [Altmannshofer & Straub, EPJC (2015) 75 382].




Angular observables

(et improved sensitivity by considering angular observables in the
BY - K™%~ decay.
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ASBZ [JHEP 08 (2016) 98], DHMV [JHEP 1204 (2012) 104], ATLAS [JHEP 10 (2018) 047],
Belle [PRL 118 (2017) 111801], CMS [PLB 781 (2018) 517], LHCb [PRL 125 (2020) 011802]

e Atlow q2, see some tension between the data and the SM predictions.



https://link.springer.com/article/10.1007/JHEP10(2018)047
https://www.sciencedirect.com/science/article/pii/S0370269318303149
https://doi.org/10.1103/PhysRevLett.125.011802

' b — S,u+,u_ Interpretation

From Talk by P. Stangl
https://conference.ippp.dur.ac.uk/event/876]
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https://conference.ippp.dur.ac.uk/event/876
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b — su™u~ interpretation
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A similar analysis has also
been performed using
GAMBIT in
[arXiv:2006.03489]

Different behaviour in Cy
due to differences in
iInputs/theory treatment.

Re(AClo)



http://arxiv.org/abs/arXiv:2006.03489

Extending the programme

How well do we understand the SM

predictions?

>

The spectrum in the data is
complicated by resonance
contributions.

Motivates using qz—dependent
models e.g. isobar models

[EPJC 78 (2018) 6] Or parametric
expansions [arXiv:2011.09813].
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https://link.springer.com/article/10.1140/epjc/s10052-018-5937-3
https://arxiv.org/abs/2011.09813
https://doi.org/10.1140/epjc/s10052-017-4703-2

Extending the programme

. Are similar effects seenin b — du™u~ transitions?

»  Further suppressed by the small size of |V, ;| in the SM, could have

increased sensitivity to BSM effects if the underlying theory doesn’t
have the same flavour structure as the SM.

» Can get visible CP violating effects due to large weak phase
differences (charmonium resonances and light-quark resonances
provide sources of strong phase difference).

« Are similar effects seen in b-baryon transitions?




" Hadronic B decays

e Extensive expertise in Warwick at
carrying out so-called Dalitz plot
analysis of decays with three
pseudoscalars in the final state.

--------------- ¥(3770) — D* D LHCD
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* Primary interest of the ongoing work
Is on studies of CP violation and
hadron spectroscopy.

Candidates / (17.3 MeV/c?)

e L
-,

4.5
m(D*D") [GeV/c?]

e We could also constrain charmonium
contributions in rare b-hadron decays
using information form hadronic Charmonium states in
B — DDK decays. Bt — DtD Kt

_ . PRD102 (2020) 112003]
e The Bt - DD K™ analysis was [

carried out using Laura++ with Warwick
iInvolvement.
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https://doi.org/10.1103/PhysRevD.102.112003

" Hadronic B decays

« At Warwick we are also actively involved in measurements of:
» yusing B - DKn decays.
» [ using B — Drnr decays.

»  CP violation in 3-body b-hadron decays
(e.g.inBT - atn ntorB — thJrh_ decays).

, B.inBY - K'°K™ decays.
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L epton Universality lests

* Theoretical uncertainties cancel ratios of decay rates between decays
with dimuon and dielectron final-states:
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LHCb [PRL 122 (2019) 191801], [JHEP 08 (2017) 055],
BaBar [PRD 93 (2016) 052015], Belle [arXiv:1908.01848].
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« LHCb data are approximately 2.50 from SM expectations at low q2
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https://doi.org/10.1103/PhysRevLett.122.191801
https://doi.org/10.1007/JHEP08(2017)055
http://arxiv.org/abs/arXiv:1908.01848

L epton Universality lests

 Theoretically clean but experimentally
challenging due to FSR and
Bremsstrahlung from the electrons.

q? [GeV?/c*]

» Need to unfold the measured
distribution to compare rates in a

i 2 e e T e
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» Rely on GEANT4 to describe
Bremsstrahlung due to detector
material.

LHCb (after ET > Zé)MeV recovery)
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»  Rely on PHOTOS to describe QED R
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* We are involved at Warwick in efforts q - :

(0 measure Réb m BS — gbf ¢ 450 5000 5500 6000
decays. m(K*mete”) [MeV/c?]
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Electroweak precision tests

Ongoing effort measure my, from
the pr spectrum of u™ from W=,

Targeting an experimental precision

of O(10 MeV/c?).

Profit from unique coverage of the
LHCb detector and correlations
between PDF sets in different
pseudorapidity ranges to get an
improved measurement of ny,

[EPJ C75 (2015) 601].
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http://dx.doi.org/10.1140/epjc/s10052-015-3810-1

Electroweak precision tests

« Use fixed-order QCD calculations to describe rapidity and angular
distribution of the W* bosons.

 Non-perturbative effects are important — rely on parton showering.

« The pr spectrumis

MV [arXiv:1907.09958]
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* Also sensitive to effects from FSR (QED) radiation, currently modelled
using PHOTOS.
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https://dx.doi.org/10.1140/epjc/s10052-017-5475-4&v=76613ef5

Deuteron production

« Measure deuteron production rates in pp, heavy ion, p-ion and fixed
target collisions.

» Use PID capability of the RICH detectors to separate deuterons from
other charged particle species.

* This could have an interesting overlap with work at Warwick on the
TORCH detector, a proposed time-of-flight detector for a future upgrade

of LHCDb.
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Warwick activities

Rare b-hadron decays (TB, MK, AW) ‘

Monash activities

Rare b-hadron decays (UE, TH) i

CP violation in charmless and open
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Searches for (apparently) baryon
number violating decays (UE)
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Effective theory

* (Can write a Hamiltonian for an effective theory of b—s processes:

Wilson coefficient Local 4 fermion operators with
(integrating out scales above u) different Lorentz structures
4G .
Her = d Vi {; 1 Z Ci(p c.f. Fermi theory of
V2 T = weak interaction where

at low energies:

AHeff — ATONP 92 92
q<—0 mW — (q mW
NP scale NP can modify
SM contribution  I.e. the full theory can
knp can have all/some/none or introduce be replaced by a 4-

new operators  fermion operator and a

of the suppression of the SM, ,
coupling constant, Gr.

e.g MFV inherits SM CKM
suppression.
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' Operators

Ditferent processes are sensitive to different 4-fermion operators.
= (Can exploit this to over-constrain the system.

photon (constrained by radiative decays and

b—st+¢- processes at small g2
) (501 PrbF, ) )/l P )

Or = (myp/e t t
_ ) l constrained by b—s£+¢£~ processes
010 = (57, PLb) (I 350) ( v P )
Og = (5Pgb)(£¢) axial vector current (constrained by
Op = (5Ppb)(fsf) leptonic decays and b—s£+£~ processes)

scalar and pseudoscalar operators
(constrained primarily by leptonic decays)

Can also have right-handed counterparts of the operators whose
contribution is small in the SM.

20



