

From lattice QCD in-medium heavy-quark interactions tO <u>deep learning</u> biv

Passenger:

Travel with:

he 19th International Conference on Strangeness in Quark Matter

Date: <u>2021 - May - 19</u>

Shuzhe Shi (McGill University)

Kai Zhou, Jiaxing Zhao, Swagato Mukherjee, and Pengfei Zhuang

Ticket #: <u>(arXiv)2105.07862</u>

Outline

• Task: obtain $V_{O\bar{O}}(T, r)$ from LQCD bottomonium masses & thermal widths

- Methodology
 - what is Deep Neural Network
 - new algorithm using DNN to extract $V_{O\bar{O}}(T,r)$
 - two closure tests performed

• Results. Phenomenological consequence?

Quarkonium in the QGP

- In heavy-ion collisions, quarkonium production serves as a probe of the QGP. Accurate understanding of the in-medium heavy-quark interaction?
- - Real potential modified by color-screening
 - Imaginary potential arises due to $(QQ)_1 \rightarrow (QQ)_8$, Landau damping, ...

Hard Thermal Loop potentials

$$\begin{split} V_R(T,r) &= \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r) e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right) + B \,, \\ V_I(T,r) &= -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} {\binom{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1}} \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \phi(\mu_D r) \,. \end{split}$$

see e.g., Laine, Philipsen, Romatschke, and Tassler, JHEP 03, 054 (2007)

01

Quarkonium in the QGP

- Accurate understanding of the in
 - Real potential modified by co
 - Imaginary potential arises due

Hard Thermal Loop potentials

$$V_{R}(T,r) = \frac{\sigma}{\mu_{D}} \left(2 - (2 + \mu_{D}r)e^{-\mu_{D}r} \right) -$$

$$V_{I}(T,r) = -\frac{\sqrt{\pi}}{4} \mu_{D} T \sigma r^{3} G_{2,4}^{2,2} {\binom{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, -\frac{3}{2}, -\frac{3}{2$$

see e.g., Laine, Philipsen, Romatschke,

In heavy-ion collisions, quarkonium production serves as a probe of the QGP.

A. Islam and M. Strickland, JHEP03(2021)235 See M. Strickland, WED, 12:55

01

Bottomonium mass and thermal width, lattice QCD with finite m_Q

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky: See <u>R. Larsen, THU, 10:10, Room A</u> Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

See <u>R. Larsen, THU, 10:10, Room A</u> R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky: Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

Can we understand the new lattice result using Hard Thermal Loop potential?

Can we understand the new lattice result using Hard Thermal Loop potential?

Applications of Deep-Learning techniques in Heavy-Ion Physics

Shahid Khan, TUE, 12:30, Room D

Identify phase transition: Nature Commun.9,210(2018):Pang, Zhou, Su, Petersen, Stöcker, and Wang

with QCD PF Determine the parton distribution function:

Debbio, Forte, Latorre, Piccione, and Rojo, JHEP (2007)039

Regenerate spectral function:

PhysRevD.102.096001: Kades, Pawlowski, Rothkopf, Scherzer, Urban, Wetzel, Wink, and Ziegler

and more ...

Lingxiao Wang, TUE, 10:50, Room A

What are Deep Neural Networks?

- At the first layer:

What are Deep Neural Networks?

- At the first layer:
- At later layers:

piecewise linear interpolation!!!

[Using activation function $\sigma(z) = \max(0,z)$]

How to learn potential using DNN?

Test I - Can we learn V(r) from $\{E_n\}$?

learn V(r) according to

$$\{E_n\} = \left\{\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}, \frac{19}{2}\right\} \text{ GeV}$$

target spectrum

Test I - Can we learn V(r) from $\{E_n\}$? -- Yes! (for a certain *r* range) learn V(r) according to

$$\{E_n\} = \left\{\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}, \frac{19}{2}\right\} \text{ GeV}$$

target spectrum

Deviate from the exact potential where all $\psi_n \to 0$,

 $\delta E_n = \langle \psi_n | \, \delta V(r) \, | \, \psi_n \rangle$

Test II - Can we recover a known complex V(T, r)? -- Yes!

• Start with a known potential (solid line)

$$V_R(T,r) = \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r)e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right)$$
$$V_I(T,r) = -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right|$$

- Compute $\{m_n, \Gamma_n\}$ at $T = \{0, 151, 173, 199, 251, 334\}$ MeV
- Learn the potential using DNN (dash + band) ≥ 0.1

Test II - Can we recover a known complex V(T, r)? -- Yes!

Start with a known potential (solid line)

$$V_R(T,r) = \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r)e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right)$$
$$V_I(T,r) = -\frac{\sqrt{\pi}}{4} \mu_D T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right) - \alpha T \sigma r^3 G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right) \left| \frac{\mu_D^2 r^2}{4} \right|$$

- Compute $\{m_n, \Gamma_n\}$ at $T = \{0, 151, 173, 199, 251, 334\}$ MeV
- Learn the potential using DNN (dash + band) ≥ 0.5

Results

What physics we have learned from $V_{\text{DNN}}(T, r)$?

What physics we have learned from $V_{\text{DNN}}(T, r)$? --- compare with HTL potential used in [1]

[1] A. Islam and M. Strickland, JHEP03(2021)235

[1] A. Islam and M. Strickland, JHEP03(2021)235

Summary and Outlook

• Develop new algorithm employing DNN to learn V(r) from $\{E_n\}$.

• Extract HF complex V(T, r) from LQCD results of bottomonium m and Γ .

Phenomenological consequences in heavy-ion collisions?

[consistent with LQCD using static potential: see R. Larsen, THU, 10:10, Room A]

Back-up Slides

How to learn potential using DNN?

How to learn potential using DNN?

$$V(T, r) = V_R(T, r) + i V_I(T, r)$$

In a *typical* Deep Learning problem, true function V(T,r) is *known*,

In *this work*, true value for V(T,r) is *unknown*, $J = \chi^2 + \text{regularizer}$ (*implicit* function of W and b)

$$\delta m_{i} = \langle \psi_{i} | \delta V_{R}(r) | \psi_{i} \rangle,$$

$$\delta m_{i} = -\langle \psi_{i} | \delta V_{I}(r) | \psi_{i} \rangle,$$

$$\chi^{2} = \sum_{T, i} \left(\frac{m_{T, i} - m_{T, i}^{\text{lattice}}}{\delta m_{T, i}^{\text{lattice}}} \right)^{2} + \left(\frac{\Gamma_{T, i} - \Gamma_{T, i}^{\text{lattice}}}{\delta \Gamma_{T, i}^{\text{lattice}}} \right)^{2},$$

$$\hat{H}\psi_n = -\frac{\nabla^2}{2m_\mu}\psi_n + V(r)\psi_n = E_n\psi_n$$

 $J = \|V_{\text{DNN}}(T, r) - V_{\text{true}}(T, r)\|^2 + \text{regularizer} \quad \text{(distance)}$

- $\partial_W J$, $\partial_h J$ can be computed exactly, thanks to the perturbation theory.

Uncertainty Quantification according to Bayesian inference

 Posterior distribution for DNN parameter Posterior($\boldsymbol{\theta} \mid \text{data}$) $\propto L(\boldsymbol{\theta} \mid \text{data})$

 $\chi^2(\boldsymbol{\theta})$ is an implicit function of $V_{\text{DNN}}(\boldsymbol{\theta}; r)$

- Task #1: find the most optimal parameter set by maximizing Posterior.
- Task #2: at any distance r, compute the likelihood (density) distribution of V_{A} ,

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

eters
$$(\boldsymbol{\theta})$$

• Prior $(\boldsymbol{\theta}) = N_0 \exp\left[-\frac{\chi^2(\boldsymbol{\theta})}{2} - \frac{\lambda}{2}\boldsymbol{\theta} \cdot \boldsymbol{\theta}\right].$

How to compute the likelihood (density) distribution of $V_{\boldsymbol{\theta}}$

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

- Method 1)
 - Sample $\{\theta_i\}$ according to a flat distribution: $P(\theta) = 1$; • Each data point corresponds to the element volume $d^N \theta_i = 1$; • Compute $V_{\theta_i}(r)$, $\chi^2_{\theta_i}$, and Posterior(θ_i | data);

 - For given r, histogram $V_{\theta_i}(r)$ with weights

 $w_i = P(V_{\theta_i}) dV_i = \text{Posterior}(\theta_i | \text{data})$

How to compute the likelihood (density) distribution of V_A

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

- Method 2)

 - Sample $\{\theta_i\}$ according to the posterior: $P(\theta) = \text{Posterior}(\theta \mid \text{data});$ • Each data point corresponds to the element volume $d^N \theta_i = 1/Posterior(\theta_i)$; • Compute $V_{\theta_i}(r)$, $\chi^2_{\theta_i}$, and Posterior(θ_i | data);
 - For given r, histogram $V_{\theta_i}(r)$ with weights

$$w_i = P(V_{\theta_i}) dV_i = 1$$

How to compute the likelihood (density) distribution of V_{A}

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

- Method 3)
 - Sample $\{\theta_i\}$ according to a reference distribution: $P(\theta) = \tilde{P}(\theta)$; • Each data point corresponds to the element volume $d^N \theta_i = 1/\tilde{P}(\theta_i)$;

 - Compute $V_{\theta_i}(r)$, $\chi^2_{\theta_i}$, and Posterior(θ_i | data);
 - For given r, histogram $V_{\theta_i}(r)$ with weights

 $w_i = P(V_{\theta_i}) dV_i = \text{Posterior}(\theta_i) / \tilde{P}(\theta_i)$

How to compute the likelihood (density) distribution of V_{A}

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

- Method 3)
 - Sample $\{\theta_i\}$ according to a reference distribution: $P(\theta) = \tilde{P}(\theta)$; • Each data point corresponds to the element volume $d^N \theta_i = 1/\tilde{P}(\theta_i)$; • Compute $V_{\theta_i}(r)$, $\chi^2_{\theta_i}$, and Posterior(θ_i | data);

 - For given r, histogram $V_{\theta_i}(r)$ with weights

 $w_i = P(V_{\theta_i}) dV_i = \text{Posterior}(\theta_i) / \tilde{P}(\theta_i)$

• In practice:

$$\tilde{P}(\boldsymbol{\theta}) = (2\pi)^{-N_{\theta}/2} \sqrt{\det[\Sigma^{-1}]} \times \exp\left[-\frac{\Sigma_{ab}^{-1}}{2}(\theta_a - \theta_a^{\mathsf{opt}})(\theta_b - \theta_b^{\mathsf{opt}})\right] \qquad \Sigma_{ab}^{-1} = \lambda \delta_{ab} + \frac{1}{2} \frac{\partial^2 \chi^2(\boldsymbol{\theta})}{\partial \theta_a \partial \theta_b}$$

Consistency test with *T*-indept. DNN and polynomial

Y. Burnier and A. Rothkopf, PhysRevD.95.054511

input layer

