19th International Conference on Strangeness in Quark Matter 17-22 May 2021

Heavy-flavour hadronisation in small and large systems

Grazia Luparello INFN Trieste email: grazia.luparello@cern.ch

Heavy-flavour hadronisation in small systems

• The standard picture based on the factorisation approach:

 $(x_1, x_2, \mu_{\rm R}, \mu_{\rm F}) \otimes D_{{
m c} \to {
m H}_{
m c}}(z = p_{{
m H}_{
m c}}/p_{
m c}, \mu_{
m F})$

Hadronisation via fragmentation

- pQCD models based on the factorisation appoach:
 - Use fragmentation fractions parametrised on e+e- and ep collision data
 - assume universality of fragmentation fractions versus collision systems and energies
- Recent measurements of heavy-flavour baryon production challenge this assumption
- Additional mechanisms at play in pp collisions beyond simple string. fragmentation?

Heavy-flavour hadronisation in large systems

• Phase space at the hadronisation is filled with partons

• partons which are close to each other in phase space (position and momentum) can recombine into hadrons • Competing mechanisms for hadronisation in QGP: fragmentation vs recombination

Heavy-flavour hadronisation in large systems

• Phase space at the hadronisation is filled with partons

• partons which are close to each other in phase space (position and momentum) can recombine into hadrons • Competing mechanisms for hadronisation in QGP: fragmentation vs recombination

• Modification of the p_T distribution of produced hadrons:

- Enhancement of baryon-to-meson ratio at intermediate p_T
- Strange quarks abundant in the QGP -> Enhancement of heavy-flavour mesons with strange quarks relative to non-strange heavy-flavour mesons

Grazia Luparello - INFN Trieste

Heavy-flavour hadronisation in large systems

• Phase space at the hadronisation is filled with partons

• partons which are close to each other in phase space (position and momentum) can recombine into hadrons • Competing mechanisms for hadronisation in QGP: fragmentation vs recombination

• Modification of the p_T distribution of produced hadrons:

- Enhancement of baryon-to-meson ratio at intermediate p_T
- Strange quarks abundant in the QGP -> Enhancement of heavy-flavour mesons with strange quarks relative to non-strange heavy-flavour mesons

Ratio of the production yields of different hadron species are sensitive to modification of the hadronisation process

Heavy-flavour hadronisation in small systems

Grazia Luparello - INFN Trieste

Charm meson-over-meson production ratios

Charm-hadron-species relative abundances sensitive to fragmentation fractions

• Almost flat p_T trend

In agreement within uncertainties with models and with measurements at e+e- colliders

Charm meson-over-meson production ratios

Charm-hadron-species relative abundances sensitive to fragmentation fractions

Almost flat p_T trend

In agreement within uncertainties with models and with measurements at e+e- colliders

 No dependence on the collision system observed for non-strange D mesons

Charm meson-over-meson production ratios

Charm-hadron-species relative abundances sensitive to fragmentation fractions

Almost flat p_T trend

In agreement within uncertainties with models and with measurements at e+e- colliders

 No dependence on the collision system observed for non-strange D mesons

- Compatible results at mid-rapidity between ALICE and CMS
- PYTHIA 8 Monash, HERWIG, POWHEG and GM-VFNS do not reproduce the pt dependence

PYTHIA 8 Monash: EPJ C74 (2014) 3024 HERWIG 7: EPJ C58 (2008) 639 **POWHEG: JHEP 09 (2007) 126** GM-VFNS: PRD 101 (2020) 114021

Non universality of the fragmentation fractions for charm baryons

Which is the origin of the modification of the Λ_c^+/D^0 ratio?

Λ_c+/D⁰ vs light flavours ratios

• Caveat:

- Light-flavour hadrons have a significant contribution from gluon fragmentation

Grazia Luparello - INFN Trieste

• Similar features for Λ_c^+/D^0 and light-flavour ratios

Common mechanism for light and charm baryon formation?

Low p_T light-flavour hadrons mainly originate from soft scattering process involving small momentum transfers

Ratio of fragmentation fractions through beauty hadrons

• $f_{\Lambda b}/(f_d+f_u)$ strongly depends on p_T

Is the decreasing trend of the baryonto-meson ratio a baryon/meson effect or a mass effect?

Grazia Luparello - INFN Trieste

Ratio of fragmentation fractions through beauty hadrons

• $f_{\Lambda b}/(f_d+f_u)$ strongly depends on p_T

Is the decreasing trend of the baryonto-meson ratio a baryon/meson effect or a mass effect?

- dependency driven by the 13 TeV sample (significance 8.3σ)
- other energies not significant when considered separately

New measurements with larger statistics will allow further investigation of the p_T dependence of f_s/f_d

(significance 4.8σ)

B_c-meson measurements

• Ground state of two different heavy-flavour quarks (c+b) with a mass of ~6.4 GeV/c²

Grazia Luparello - INFN Trieste

Hint of not-flat p_T trend, but not as pronounced as $\Lambda_b^0/(B^0+B^+)$

• PYTHIA 8 with enhanced Colour Reconnection (CR) effects

- allows string formation beyond leading colour approximation •
- junction connection topologies enhance baryon formation

 \boldsymbol{q}

Christiansen, Skands, JHEP 1508 (2015) 003

• PYTHIA 8 with enhanced Colour Reconnection (CR) effects

- allows string formation beyond leading colour approximation
- junction connection topologies enhance baryon formation

Relativistic Quark Model (RQM)

- **PDG**: $5 \wedge_c (l=0)$, $3 \Sigma_c (l=1)$, $8 \Xi_c (l=1/2)$, $2 \Omega_c (l=0)$
- **RQM**: add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

Christiansen, Skands, JHEP 1508 (2015) 003

• Statistical Hadronization Model (SHM) including additional excited baryon states predicted by the

SHM: He, Rapp, PLB 795 (2019) 117-121 **RQM: Ebert, Faustov, Galkin, PRD 84 (2013) 014025**

$n_i \ (\cdot 10^{-4} \ {\rm fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	ſ
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0

• PYTHIA 8 with enhanced Colour Reconnection (CR) effects

- allows string formation beyond leading colour approximation •
- junction connection topologies enhance baryon formation
- **Relativistic Quark Model (RQM)**
 - **PDG**: $5 \wedge_c (|=0)$, $3 \Sigma_c (|=1)$, $8 \Xi_c (|=1/2)$, $2 \Omega_c (|=0)$
 - **RQM**: add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

 Catania model Minissale, Plumari, Greco, arXiv:2012.12001

- charm hadronisation via both coalescence and fragmentation
- coalescence model based on the Wigner formalism •

Christiansen, Skands, JHEP 1508 (2015) 003

• Statistical Hadronization Model (SHM) including additional excited baryon states predicted by the

SHM: He, Rapp, PLB 795 (2019) 117-121 **RQM: Ebert, Faustov, Galkin, PRD 84 (2013) 014025**

• PYTHIA 8 with enhanced Colour Reconnection (CR) effects

- allows string formation beyond leading colour approximation •
- junction connection topologies enhance baryon formation
- **Relativistic Quark Model (RQM)**
 - **PDG**: $5 \wedge_c (l=0)$, $3 \Sigma_c (l=1)$, $8 \Xi_c (l=1/2)$, $2 \Omega_c (l=0)$
 - **RQM**: add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c •
- Catania model Minissale, Plumari, Greco, arXiv:2012.12001
 - charm hadronisation via both coalescence and fragmentation
 - coalescence model based on the Wigner formalism

Quark Recombination Mechanism (QCM) Song, Li, Shao, EPJ C78 no. 4 (2018) 344

- combination of charm quarks with light quarks with equal velocity
- relative abundances of the different baryon species fixed by thermal weights

Christiansen, Skands, JHEP 1508 (2015) 003

• Statistical Hadronization Model (SHM) including additional excited baryon states predicted by the

SHM: He, Rapp, PLB 795 (2019) 117-121 **RQM: Ebert, Faustov, Galkin, PRD 84 (2013) 014025**

Λ_c+/D^o ratio: comparison with models

arXiv:2011.06078 arXiv:2011.06079

• PYTHIA 8 with enhanced CR enhances the baryon production with respect to **PYTHIA 8 Monash**

• **SHM+RQM** enhances the baryon yield with respect to SHM+PDG

• Catania is the model that most enhances the baryon yield and slightly overestimates the data

Λ_{c} +/D^o in low and high multiplicity events

Grazia Luparello - INFN Trieste

Λ_{c}^{+}/D^{0} in low and high multiplicity events

• Evident dependence on multiplicity of Λ_c^+/D^0

• Also in the **lowest multiplicity** the Λ_c^+/D^0 ratio is larger than measurement in e⁺e⁻ and ep collisions

ALI-PREL-336418

Chen, He, PLB (2021) 136144

Λ_{c}^{+}/D^{0} in low and high multiplicity events

• Evident dependence on multiplicity of Λ_c^+/D^0

and ep collisions

• PYTHIA 8 Monash:

•

• PYTHIA 8 with enhanced CR:

- describes the p_T trend •

• SHM+RQM:

- multiplicity events

Chen, He, PLB (2021) 136144

Grazia Luparello - INFN Trieste

• Also in the **lowest multiplicity** the Λ_c^+/D^0 ratio is larger than measurement in e⁺e⁻

does not reproduce the p_T trend

describes the magnitude of the Λ_c^+/D^0 ratio

shows a multiplicity dependence compatible for the low multiplicity events but understimates the ratio in high

Heavier charmed baryon states: Σ_c^{0,+,++}

	mass (MeV/c ²)	Quar
Λ_{c}^{+}	2286	
Σ _c ++, Σ _c 0	2455	uu
Ξc ⁺	2467	
Ξc ⁰	2471	
Ω_{c}^{0}	2699	

Heavier charmed baryon states: Σ_c^{0,+,++}

• $\Sigma_c^{0,+,++}/D^0$ largely enhanced with respect to **Pythia 8 Monash** and e⁺e⁻ measurements

	mass (MeV/c ²)	Quar
Λ_{c}^{+}	2286	
Σ _c ++, Σ _c 0	2455	uu
Ξ_{c}^{+}	2467	
Ξc ⁰	2471	
Ω_{c}^{0}	2699	

- $\Sigma_c^{0,+,++}/D^0$ largely enhanced with respect to **Pythia 8 Monash** and e⁺e⁻ measurements • ~40% of feed-down Λ_c^+ from $\Sigma_c^{0,+,++}$
 - only partially accounts for the larger Λ_c^+/D^0 ratio in pp wrt e⁺e⁻ measurements
- PYTHIA 8 with CR describes $\Sigma_c^{0,+,++}/D^0$ but overestimates the $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratio
- SHM+RQM describes both measurements

	mass (MeV/c ²)	Quark
Λc ⁺	2286	L
Σ _c ++, Σ _c 0	2455	uuc
Ξc ⁺	2467	L
Ξc ⁰	2471	C
Ω_{c}^{0}	2699	S

Heavier charmed baryon states: Ξ_c^0 and Ξ_c^+

	mass (MeV/c ²)	Quar
Λ_{c}^{+}	2286	
Σ _c ++, Σ _c 0	2455	uu
Ξc ⁺	2467	
Ξc ⁰	2471	
Ω_{c}^{0}	2699	

• **p**_T dependence of the $\Xi_c^{0,+}/D^0$ ratio not described by models

• PYTHIA 8 with enhanced CR

-> additional strange-quark production needed?

-> not enough resonances for charm-strange baryons?

->simple coalescence is not enough?

• Catania model closest to the data

-> both fragmentation and coalescence needed?

ALI-PREL-486637

BR($\Omega_c^0 \rightarrow \pi^+ \Omega^-$) = (0.51±0.07)% from theory calculations Yu-Kuo Hsiao et al., EPJC 80 (2020) 1066

- $BR^*\Omega_c^0/D^0$ ratio shows no p_T dependence
- All the models underestimate the BR* Ω_c^0/D^0 and BR* Ω_c^0/Ξ^0

	mass (MeV/c ²)	Quark
Λ_{c}^{+}	2286	L
$\Sigma_{c}^{++}, \Sigma_{c}^{0}$	2455	uuc
Ξ _c +	2467	ι
Ξ _c 0	2471	(
Ω_{c}^{0}	2699	ç

Charm fragmentation fractions in pp collisions

B factories: EPJC 76 no. 7 (2016) 397 LEP: EPJC 75 no. 1 (2015) 19 HERA: EPJC 76 no. 7 (2016) 397

Important for the calculation of the total charm cross section

Calculated as the ratio of the p_T-integrated cross section of each measured hadron specie by the sum of the cross sections of the different ground-states charm hadrons

c	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}})[\%]$
0	$37.5 \pm 1.6(\text{stat})^{+2.3}_{-3.5}(\text{syst})$
+	$16.6 \pm 1.7(\text{stat})^{+1.5}_{-1.9}(\text{syst})$
+ s	$7.0 \pm 1.0(\text{stat})^{+1.8}_{-1.1}(\text{syst})$
+ c	$23.7 \pm 1.3(\text{stat})^{+1.4}_{-2.1}(\text{syst})$
0 c	$7.6 \pm 1.2(\text{stat})^{+2.4}_{-2.3}(\text{syst})$

 $14.9 \pm 1.1(\text{stat})^{+3.9}_{-1.8}(\text{syst})$

First measurement of $f(c \rightarrow \Xi_c^0)$

f(c->H_c) different in pp and e⁺e⁻ and ep collisions

Heavy-flavour hadronisation in large systems

Grazia Luparello - INFN Trieste

D_s+/D^o in nucleus-nucleus collisions

 Hint of enhanced D_s+/D^o ratio in nucleus-nucleus collisions compared to pp collisions for p_T< 8-10 GeV/c at both RHIC and LHC energies
 Similar magnitude in central and semi-central collisions

• **Hint of enhanced D_s+/D**^o ratio in nucleus-nucleus collisions compared to pp collisions for $p_T < 8-10$ GeV/c at both RHIC and LHC energies Similar magnitude in central and semi-central collisions

Hadronisation Model (SHM)

D_s+ nuclear modification factor

TAMU: PLB 735 (2014) 445-450 PHSD: PRC 92, 014910 (2015) Catania: EPJC 78, 348 (2018)

Grazia Luparello - INFN Trieste

- Smaller D_s+ R_{AA} with respect to non-strange D-meson R_{AA} • **D**_s+ enhancement qualitatively reproduced by models including charm-quark coalescence in a strangeness rich environment
- Charm-quark coalescence is an important ingredient of the models to **describe the measurement at intermediate p**_T

Λ_{c}^{+}/D^{0} in nucleus-nucleus collisions

ALI-PREL-321702

• hadronisation mechanism? Radial-flow push in Pb-Pb collisions? • Λ_c^+/D^0 compatible with pp at high p_T (>10 GeV/c)

• Hint of enhancement of Λ_c +/D^o in Pb-Pb collisions wrt pp collision at intermediate p_T at both RHIC and LHC energies

Λ_c+/D^o ratio compared with models

• Λ_c+/D^o ratio described by models implementing heavy-quark hadronisation via recombination and fragmentation and by the statistical hadronisation model Pure coalescence models clearly overestimate the data

PRL 124 (2020) 172301

Catania: EPJ C78 (2018) 348

TAMU: PRL 124 (2020) 042301 SHM: A. Andronic et al, arXiv:2104.12754 Ko et al. three quark: PRC 79 (2009) 044905 Ko et al. with flow: PRC 101 (2020) 024909 **Tsinghua: arXiv:1805.10858** Cao et al.: PLB 807 (2020) 135561

 Λ_c^+/D^0 from pp to Pb-Pb

Grazia Luparello - INFN Trieste

• Smooth trend vs multiplicity from

pp to Pb-Pb collisions at low and intermediate p_T ?

- \bigcirc p-Pb Minimum Bias, $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$

Caveat: a trend in a given p_T range could be also be due to a modification of the p_T shape

Coalescence of beauty quarks?

- **B**_s⁰/**B**⁺ ratio compatible with both **TAMU** predictions for Pb-Pb collisions and pp reference results
- R_{AA} (non-prompt D_s+)/R_{AA} (non-prompt D⁰) above unity at low p_T
 - TAMU describes the observed trend

• Enhanced production of B_s⁰ mesons at low p_T from beauty-quark hadronisation via coalescence

TAMU: PLB 735 (2014) 445

Coalescence of beauty quarks?

- \bullet **B**_s⁰/**B**⁺ ratio compatible with both TAMU predictions for Pb-Pb collisions and pp reference results
- R_{AA} (non-prompt D_{s} +)/ R_{AA} (non-prompt D^{0}) above unity at low p_{T}
 - TAMU describes the observed trend

Interesting to see the results on B_c production in Pb-Pb collisions from CMS

Grazia Luparello - INFN Trieste

• Enhanced production of B_s⁰ mesons at low p_T from beauty-quark hadronisation via coalescence

TAMU: PLB 735 (2014) 445

Conclusions and outlook

Several measurements of single heavy-flavour hadrons available -> indicate non universality of the fragmentation fractions

- Various models proposed to explain the enhancement of the charm baryon-to-meson ratio observed in pp collisions • Further comparison between data and models useful to
 - understand the picture

Conclusions and outlook

Several measurements of single heavy-flavour hadrons available -> indicate non universality of the fragmentation fractions

- Various models proposed to explain the enhancement of the charm baryon-to-meson ratio observed in pp collisions • Further comparison between data and models useful to understand the picture
- D_s^+/D^0 and Λ_c^+/D^0 ratios in Pb-Pb collisions compatible with a scenario of hadronisation via **coalescence at low p** and fragmentation at high p_T and calculations from the statistical hadronisation model
- Understanding of heavy-flavour hadronisation interesting to extract heavy quark transport parameters of the QGP
- Common trend for heavy-flavour hadron production with **multiplicity** going from small (pp and p-Pb) to large (Pb-Pb) systems?

ALI-PREL-321682

Conclusions and outlook

Several measurements of single heavy-flavour hadrons available -> indicate non universality of the fragmentation fractions

- Various models proposed to explain the enhancement of the charm baryon-to-meson ratio observed in pp collisions • Further comparison between data and models useful to understand the picture
- D_s^+/D^0 and Λ_c^+/D^0 ratios in Pb-Pb collisions compatible with a $_{0.5}$ scenario of hadronisation via **coalescence at low p** and fragmentation at high p_T and calculations from the statistical hadronisation model
- Understanding of heavy-flavour hadronisation interesting to extract heavy quark transport parameters of the QGP

Future measurements of multi-charm baryons, beauty baryons and mesons, and exotic states will be fundamental to investigate the hadronisation process in both small and large systems

• **Exotic state** whose nature is unknown:

• compact tetraquark object ($c\bar{c}u\bar{u}$), loosely bound hadronic molecule ($D\bar{D}^{0*}$) or something else? • Production enhanced or suppressed in QGP depending on its internal structure

• RAA(Y(2S)) = 0.142 ± 0.061 (stat) ± 0.020 (syst) in 15< pt< 20 GeV/c => R_{AA} (X(3872))>1

but compatible with unity within 1σ and with $R_{AA}(\Upsilon(2S))$ within 2σ

Heavy-flavour meson production in pp collisions

• Theory calculations based on the factorisation theorem describe heavy-flavour meson production within uncertainties • Use fragmentation fractions parametrised on e+e- and ep collision data

Grazia Luparello - INFN Trieste

JFN

(2019)	168
--------	-----

Λ_{c}^{+}/D^{0} in low and high multiplicity events

• Evident dependence on multiplicity of Λ_c^+/D^0

ep collisions

Similar trend in the heavy-flavour and light-flavour sector

ALI-PREL-348097

• Also in the **lowest multiplicity** the Λ_c^+/D^0 ratio larger than measurement in e⁺e⁻ and

Ratio of fragmentation fractions: f_s/(f_u+f_d)

• Based on measurements of the heavy-strange mesons over heavy-non-strange mesons

• All the measurements are in agreement within uncertainties and with **PYTHIA 8 Monash** predictions Similar results between charm and beauty

H_c/D^o ratio: comparison with PYTHIA 8, Monash, SHM

Baryon-to-meson ratio: comparison with e+e- results

	$\Lambda_c^+/D^0\pm stat.\pm syst.$	System	\sqrt{s} (GeV)	Notes
ALICE	$0.62 \pm 0.05 \pm 0.05 \stackrel{+0.01}{_{-0.03}}$	рр	5020	$p_{ m T} > 0, y < 0.5$
ALICE	$0.45 \pm 0.03 \pm 0.06 ^{+0.06}_{-0.04}$	p–Pb	5020	$p_{\rm T} > 0, -0.96 < y < 0.04$
CLEO [7]	$0.119 \pm 0.021 \pm 0.019$	e^+e^-	10.55	
ARGUS [6, 8]	0.127 ± 0.031	e^+e^-	10.55	
LEP average [9]	$0.113 \pm 0.013 \pm 0.006$	e^+e^-	91.2	
ZEUS DIS [12]	$0.124 \pm 0.034 ^{+0.025}_{-0.022}$	e ⁻ p	320	$1 < Q^2 < 1000 { m GeV^2},$ $0 < p_{ m T} < 10 { m GeV}/c, 0.02 < y < 0.7$
ZEUS γp, HERA I [10]	$0.220 \pm 0.035 ^{+0.027}_{-0.037}$	e ⁻ p	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\text{T}} > 3.8 \text{ GeV}/c, \eta < 1.6$
ZEUS γp, HERA II [11]	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	e ⁻ p	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\text{T}} > 3.8 \text{ GeV}/c, \eta < 1.6$

INFN

arXiv:2011.06078 arXiv:2011.06079

ALI-PUB-487391

 $\odot \equiv_c^0/\Lambda_c^+$ larger than expectations and models calculations $= \frac{\Sigma_{c}^{0,+}}{\Sigma_{c}^{0,+,++}}$ described within uncertainties by Pythia Monash and by Catania Different quark content but very similar mass

Λ_c+ baryon cross sections in pp collisions

 $\circ \Lambda_{c}^{+}$ baryon production cross section measured at mid and forward rapidity • Theory calculations based on the factorisation theorem **underestimate** the data ad mid-rapidity

D_s+/D⁰ from pp to Pb-Pb

Grazia Luparello - INFN Trieste

 Smooth trend vs multiplicity from pp to Pb-Pb collisions?

D_s+ nuclear modification factor and v₂

• Smaller D_s+ R_{AA} with respect to non-strange D-meson R_{AA} • Positive v₂ for D_s⁺ and non-strange D mesons • **D**_s+ enhancement qualitatively reproduced by models reproduced by theoretical models based on charm-quark including charm-quark coalescence in a strangeness transport rich environment

TAMU: PLB 735 (2014) 445-450 PHSD: PRC 92, 014910 (2015) Catania: EPJC 78, 348 (2018)

VFN

• Charm-quark coalescence is an important ingredient of the models to **describe the measurement at** intermediate p_T

Λ_c^+/D^0 in p-Pb collisions

ALI-PUB-482944

ALI-PUB-482948

Measurement of multi-charm hadrons?

A. Andronic et al, arXiv:2104.12754

• SHMc predicts very large enhancements for hadrons with 2 or 3 charm quarks with respect to pure thermal production

• As a consequence of the enhancement, a charm hadron hierarchy

Λ_{c}^{+}/D^{0} in p-Pb collisions

Grazia Luparello - INFN Trieste

• $\Lambda_{c^+} R_{pPb}$ consistent with D meson R_{pPb} • Consistent with unity for $p_T > 2$ GeV/c • In $1 < p_T < 2$ GeV/c $R_{pPb} < 1$ with 4.1 σ significance • POWHEG+PYTHIA6 and POWLANG do not describe the data quantitatively

Charm fragmentation fractions in pp collisions

B factories: EPJC 76 no. 7 (2016) 397 LEP: EPJC 75 no. 1 (2015) 19 HERA: EPJC 76 no. 7 (2016) 397

INFN

• Total cc cross section at $\sqrt{s}=5.02$ calculated with the new fragmentation fractions • Updated values at $\sqrt{s}=2.76$ and 7 TeV are $\sim 40\%$ larger than previous measurements

Calculated as the ratio of the p_T -integrated cross section of each measured hadron specie by the sum of the cross sections of the different ground-states charm hadrons

с	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}})[\%]$
0	$37.5 \pm 1.6(\text{stat})^{+2.3}_{-3.5}(\text{syst})$
+	$16.6 \pm 1.7(\text{stat})^{+1.5}_{-1.9}(\text{syst})$
+	$7.0 \pm 1.0(\text{stat})^{+1.8}_{-1.1}(\text{syst})$
+	$23.7 \pm 1.3(stat)^{+1.4}_{-2.1}(syst)$
0	$7.6 \pm 1.2(\text{stat})^{+2.4}_{-2.3}(\text{syst})$
+	$14.9 \pm 1.1(\text{stat})^{+3.9}_{-1.8}(\text{syst})$

