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The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs

baryo-chemical potential) phase diagram

• Early Universe-like conditions at µB = 0

(matter-anti-matter symmetry)

• Transition form hadron gas to QGP at

µB = 0 is a smooth crossover at

T ' 155− 160 MeV

• At larger µB , the transition is believed to

become of first order → critical point

• Investigations from first principles:

• Lattice QCD

• Perturbative methods (HTL, etc.)

• Functional methods (FRG, DSE, etc.)
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Lattice QCD: equation of state (EoS)

F Completely describes equilibrium properties of QCD matter, and is a crucial input to

hydrodynamic simulations

F Known at µB = 0 to high precision for a few years now (continuum limit, physical

quark masses) −→ Agreement between different calculations

From grancanonical partition function Z

∗ Pressure: p = −kBT ∂ lnZ
∂V

∗ Entropy density: s =
(
∂p
∂T

)
µi

∗ Charge densities: ni =
(
∂p
∂µi

)
T,µj 6=i

∗ Energy density: ε = Ts− p+
∑
i µini

∗ More (Fluctuations, etc...)

WB: Borsányi et al., PLB 370 (2014) 99-104, HotQCD: Bazavov et al. PRD 90 (2014) 094503 2/17



Lattice QCD at finite µB

Lattice QCD suffers from the sign problem at finite chemical potential

• Taylor expansion around µB = 0

p(T, µB)

T 4
=

∞∑
n=0

c2n(T )
(µB
T

)2n
, cn(T ) =

1

n!
χBn (T, µB = 0)

• Analytical continuation from imaginary µB

• Other methods to work around the sign problem still in exploratory stages

• Reweighting techniques

• Complex Langevin

• Lefschetz thimbles

• ...

• The equation of state: lattice results for the Taylor coefficients are currently

available up to O( µ̂8
B), but the reach is still limited to µ̂B . 2− 2.5 despite great

computational effort (WB: Borsányi et al. JHEP 10 (2018) 205, HotQCD: Bazavov et al.

PRD101 (2020), 074502) 3/17



Lattice QCD at finite µB - Taylor coefficients

• Fluctuations of baryon number are

the Taylor expansion coefficients of

the pressure

χBQSijk (T ) =
∂i+j+kp/T 4

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
~µ=0

• Signal extraction is increasingly

difficult with higher orders, especially

in the transition region

• Higher order coefficients present a

more complicated structure
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WB: Borsányi et al. JHEP 10 (2018) 205;

(also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)
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Lattice QCD at finite µB - Taylor expansion

• Thermodynamic quantities at large chemical potential become problematic

• Higher orders do not help with the convergence of the series
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• Inherent problem with Taylor expansion: carried out at T = const. This doesn’t cope

well with µ̂B−dependent transition temperature

• Can we find an alternative expansion to improve finite- µ̂B behavior?

Borsányi, PP et al. 2102.06660 [hep-lat]
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An alternative approach

From simulations at imaginary µB we observe that χB1 (T, µ̂B) at (imaginary) µ̂B appears

to be differing from χB2 (T, 0) mostly by a rescaling of T :

χB1 (T, µ̂B)

µ̂B
= χB2 (T ′, 0) , T ′ = T

(
1 + κ µ̂2

B

)
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Borsányi, PP et al. 2102.06660 [hep-lat]
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An alternative approach

The other (BS) second order susceptibilities display a very similar scenario:

χS1
µ̂B

(T, µ̂B) = χBS11 (T ′, 0) , χS2 (T, µ̂B) = χS2 (T ′, 0)
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Borsányi, PP et al. 2102.06660 [hep-lat]
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Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T ) which shifts with µ̂, with a simple

T -independent shifting parameter κ. How does Taylor cope with it?

f(T, µ̂) = f(T ′, 0) , T ′ = T (1 + κ µ̂2) ,

We fitted f(T, 0) = a+ b arctan(c(T − d)) to χB2 (T, 0) data for a 48× 12 lattice
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Taylor expanding a (shifting) sigmoid

• The Taylor expansion seems to have problems reproducing the original function (left)

• Quite suggestive comparison with actual Taylor-expanded lattice data (right)
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• Problems at T slightly larger than Tpc ⇒ influence from structure in χB6 and χB8

Borsányi, PP et al. 2102.06660 [hep-lat]
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Rigorous formulation

• We have observed the µ̂B-dependence seems to amount to a simple T - rescaling

• A simplistic scenario with a single T - independent parameter κ does not provide a

systematic treatment which can serve as an alternative expansion scheme

• We allow for more than O( µ̂2) expansion of T ′ and let the coefficients be

T−dependent:

χB1 (T, µ̂B)

µ̂B
= χB2 (T ′, 0) , T ′ = T

(
1 + κ2(T ) µ̂2

B + κ4(T ) µ̂4
B +O( µ̂6

B)
)

• Important: we are simply re-organizing the Taylor expansion via an expansion in the

shift

∆T = T − T ′ =
(
κ2(T ) µ̂2

B + κ4(T ) µ̂4
B +O( µ̂6

B)
)

• Comparing the (Taylor) expansion in µ̂B and our expansion in ∆T order by order, we

can relate χBn (T ) and κn(T )

Borsányi, PP et al. 2102.06660 [hep-lat] 10/17



Rigorous formulation

Equating same-order terms one finds:

κ2(T ) =
1

6T

χB4 (T )

χB2
′
(T )

κ4(T ) =
1

360χB2
′
(T )

3

(
3χB2

′
(T )

2
χB6 (T )− 5χB2

′′
(T )χB4 (T )

2
)

and similar relations for κBSn and κSSn .

• In principle, the procedure can be carried over systematically, however higher order

terms still suffer from cancellations and can prove challenging

• Instead, we only use the first relation and combine it with simulations at

imaginary- µ̂B to extract κij2 (T ), κij4 (T )

Borsányi, PP et al. 2102.06660 [hep-lat]
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Determine κn

I. Directly determine κij2 (T ) at µ̂B = 0 from the previous relation

II. From our imaginary- µ̂B simulations ( µ̂Q = µ̂S = 0) we calculate:

T ′ − T
T µ̂2

B

= κij2 (T ) + κij4 (T ) µ̂2
B +O( µ̂4

B) = Π(T )

III. Calculate the quantity Π(T,Nτ , µ̂
2
B) for several µ̂2

B and Nτ values

IV. Perform a combined fit of the µ̂2
B and 1/N2

τ dependence of Π(T ) at each temperature,

yielding a continuum estimate for the coefficients

⇒ The O(1) and O( µ̂2
B) coefficients of the fit are κij2 (T ) and κij4 (T )

Borsányi, PP et al. 2102.06660 [hep-lat]
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The results for κ2(T ), κ4(T )

Our initial guess was not far-off:

• Fairly constant κ2(T ) over a large T -range

• Clear separation in magnitude between κ2(T )

and κ4(T ) hints at better convergence

• Agreement with the HRG model results at

low temperatures

• Polynomial fits of κ2(T ) and κ4(T ) before use

in thermodynamics (good fit qualities)
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The results for κ2(T ), κ4(T )

A similar picture appears for κBSn and κSSn
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Thermodynamics at finite (real) µB

Thermodynamic quantities at finite (real) µB can be reconstruted from the same ansazt:

nB(T, µ̂B)

T 3
= µ̂Bχ

B
2 (T ′, 0)

with T ′ = T (1 + κBB2 (T ) µ̂2
B + κBB4 (T ) µ̂4

B).

From the baryon density nB one finds the pressure:

p(T, µ̂B)

T 4
=
p(T, 0)

T 4
+

∫ µ̂B

0

dµ̂′
B
nB(T, µ̂′

B)

T 3

then the entropy, energy density:

s(T, µ̂B)

T 4
= 4

p(T, µ̂B)

T 4
+ T

∂p(T, µ̂B)

∂T

∣∣∣∣
µ̂B

− µ̂B
nB(T, µ̂B)

T 3

ε(T, µ̂B)

T 4
=
s(T, µ̂B)

T 3
− p(T, µ̂B)

T 4
+ µ̂B

nB(T, µ̂B)

T 3

And similarly for strangeness-related quantities:

nS(T, µ̂B)

T 3
= µ̂Bχ

BS
11 (T ′, 0) χS2 (T, µ̂B) = χS2 (T ′, 0)
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Thermodynamics at finite (real) µB

• We reconstruct thermodynamic quantities up to µ̂B ' 3.5 with uncertainties well

under control

• Agreement with HRG model calculations at small temperatures

• No pathological (non-monotonic) behavior is present
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Thermodynamics at finite (real) µB
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Thermodynamics at finite (real) µB

• We also check the results without the inclusion of κ4(T ) (darker shades)

• Including κ4(T ) only results in added error, but does not “move” the results

−→ Good convergence
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Summary

• The EoS for QCD at large chemical potential is highly demanded in HIC community,

especially for hydrodynamic simulations

• Historical approach of Taylor expansion for EoS has shortcomings

• Because of technical/numerical challenges

• Because of phase structure of the theory

• An alternative summation scheme tailored to the specific behavior of relevant

observables seems a better approach (better convergence)

• Thermodynamic quantities up to µ̂B ' 3.5 have very reasonable uncertainties

• Just as Taylor, systematically improvable if given sufficient computing power

THANK YOU!
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Rigorous formulation

Similar relations can be derived analogously from:

χS1
µ̂B

(T, µ̂B) = χBS11 (T ′, 0) , χS2 (T, µ̂B) = χS2 (T ′, 0)

yielding:

κBS2 (T ) =
1

6T

χBS31 (T )

χBS11
′
(T )

κBS4 (T ) =
1

360χBS11
′
(T )

3

(
3χBS11

′
(T )

2
χBS51 (T )

−5χBS11

′′
(T )χBS31 (T )

2
)

κS2 (T ) =
1

2T

χBS22 (T )

χS2
′
(T )

κS4 (T ) =
1

24χS2
′
(T )

3

(
χS2

′
(T )

2
χBS42 (T )

−3χS2
′′
(T )χBS22 (T )

2
)


