Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme

Paolo Parotto, Bergische Universität Wuppertal
May 20, 2021
Strangeness in Quark Matter 2021

with:

S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, A. Pásztor, C. Ratti, K. K. Szabó

The phase diagram of QCD

Different phases of QCD matter (in equilibrium) are depicted in (temperature vs baryo-chemical potential) phase diagram

- Early Universe-like conditions at $\mu_{B}=0$ (matter-anti-matter symmetry)
- Transition form hadron gas to QGP at $\mu_{B}=0$ is a smooth crossover at $T \simeq 155-160 \mathrm{MeV}$
- At larger μ_{B}, the transition is believed to become of first order \rightarrow critical point
- Investigations from first principles:
- Lattice QCD
- Perturbative methods (HTL, etc.)
- Functional methods (FRG, DSE, etc.)

Lattice QCD: equation of state (EoS)

* Completely describes equilibrium properties of QCD matter, and is a crucial input to hydrodynamic simulations
\star Known at $\mu_{B}=0$ to high precision for a few years now (continuum limit, physical quark masses) $\longrightarrow \quad$ Agreement between different calculations

From grancanonical partition function \mathcal{Z}

* Pressure: $p=-k_{B} T \frac{\partial \ln \mathcal{Z}}{\partial V}$
* Entropy density: $s=\left(\frac{\partial p}{\partial T}\right)_{\mu_{i}}$
* Charge densities: $n_{i}=\left(\frac{\partial p}{\partial \mu_{i}}\right)_{T, \mu_{j \neq i}}$
* Energy density: $\epsilon=T s-p+\sum_{i} \mu_{i} n_{i}$
* More (Fluctuations, etc...)

WB: Borsányi et al., PLB 370 (2014) 99-104, HotQCD: Bazavov et al. PRD 90 (2014) $0945032 / 17$

Lattice QCD at finite μ_{B}

Lattice QCD suffers from the sign problem at finite chemical potential

- Taylor expansion around $\mu_{B}=0$

$$
\frac{p\left(T, \mu_{B}\right)}{T^{4}}=\sum_{n=0}^{\infty} c_{2 n}(T)\left(\frac{\mu_{B}}{T}\right)^{2 n}, \quad c_{n}(T)=\frac{1}{n!} \chi_{n}^{B}\left(T, \mu_{B}=0\right)
$$

- Analytical continuation from imaginary μ_{B}
- Other methods to work around the sign problem still in exploratory stages
- Reweighting techniques
- Complex Langevin
- Lefschetz thimbles
- ...
- The equation of state: lattice results for the Taylor coefficients are currently available up to $\mathcal{O}\left(\hat{\mu}_{B}^{8}\right)$, but the reach is still limited to $\hat{\mu}_{B} \lesssim 2-2.5$ despite great computational effort (WB: Borsányi et al. JHEP 10 (2018) 205, HotQCD: Bazavov et al. PRD101 (2020), 074502)

Lattice QCD at finite μ_{B} - Taylor coefficients

- Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$
\chi_{i j k}^{B Q S}(T)=\left.\frac{\partial^{i+j+k} p / T^{4}}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\vec{\mu}=0}
$$

- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure

WB: Borsányi et al. JHEP 10 (2018) 205;

Lattice QCD at finite μ_{B} - Taylor expansion

- Thermodynamic quantities at large chemical potential become problematic
- Higher orders do not help with the convergence of the series

- Inherent problem with Taylor expansion: carried out at $T=$ const. This doesn't cope well with $\hat{\mu}_{B}$-dependent transition temperature
- Can we find an alternative expansion to improve finite- $\hat{\mu}_{B}$ behavior?

An alternative approach

From simulations at imaginary μ_{B} we observe that $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)$ at (imaginary) $\hat{\mu}_{B}$ appears to be differing from $\chi_{2}^{B}(T, 0)$ mostly by a rescaling of T :

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}_{B}^{2}\right)
$$

An alternative approach

The other (BS) second order susceptibilities display a very similar scenario:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right), \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a 48×12 lattice

Borsányi, PP et al. 2102.06660 [hep-lat]

Taylor expanding a (shifting) sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- Quite suggestive comparison with actual Taylor-expanded lattice data (right)

- Problems at T slightly larger than $T_{p c} \Rightarrow$ influence from structure in χ_{6}^{B} and χ_{8}^{B}

Rigorous formulation

- We have observed the $\hat{\mu}_{B}$-dependence seems to amount to a simple T - rescaling
- A simplistic scenario with a single T - independent parameter κ does not provide a systematic treatment which can serve as an alternative expansion scheme
- We allow for more than $\mathcal{O}\left(\hat{\mu}^{2}\right)$ expansion of T^{\prime} and let the coefficients be T-dependent:

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

- Important: we are simply re-organizing the Taylor expansion via an expansion in the shift

$$
\Delta T=T-T^{\prime}=\left(\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

- Comparing the (Taylor) expansion in $\hat{\mu}_{B}$ and our expansion in ΔT order by order, we can relate $\chi_{n}^{B}(T)$ and $\kappa_{n}(T)$

Rigorous formulation

Equating same-order terms one finds:

$$
\begin{aligned}
\kappa_{2}(T) & =\frac{1}{6 T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B^{\prime}}(T)} \\
\kappa_{4}(T) & =\frac{1}{360 \chi_{2}^{B^{\prime}}(T)^{3}}\left(3 \chi_{2}^{B^{\prime}}(T)^{2} \chi_{6}^{B}(T)-5 \chi_{2}^{B^{\prime \prime}}(T) \chi_{4}^{B}(T)^{2}\right)
\end{aligned}
$$

and similar relations for $\kappa_{n}^{B S}$ and $\kappa_{n}^{S S}$.

- In principle, the procedure can be carried over systematically, however higher order terms still suffer from cancellations and can prove challenging
- Instead, we only use the first relation and combine it with simulations at imaginary- $\hat{\mu}_{B}$ to extract $\kappa_{2}^{i j}(T), \kappa_{4}^{i j}(T)$

Determine κ_{n}

I. Directly determine $\kappa_{2}^{i j}(T)$ at $\hat{\mu}_{B}=0$ from the previous relation
II. From our imaginary- $\hat{\mu}_{B}$ simulations $\left(\hat{\mu}_{Q}=\hat{\mu}_{S}=0\right)$ we calculate:

$$
\frac{T^{\prime}-T}{T \hat{\mu}_{B}^{2}}=\kappa_{2}^{i j}(T)+\kappa_{4}^{i j}(T) \hat{\mu}_{B}^{2}+\mathcal{O}\left(\hat{\mu}_{B}^{4}\right)=\Pi(T)
$$

III. Calculate the quantity $\Pi\left(T, N_{\tau}, \hat{\mu}_{B}^{2}\right)$ for several $\hat{\mu}_{B}^{2}$ and N_{τ} values
IV. Perform a combined fit of the $\hat{\mu}_{B}^{2}$ and $1 / N_{\tau}^{2}$ dependence of $\Pi(T)$ at each temperature, yielding a continuum estimate for the coefficients

$$
\Rightarrow \underline{\text { The } \mathcal{O}(1) \text { and } \mathcal{O}\left(\hat{\mu}_{B}^{2}\right) \text { coefficients of the fit are } \kappa_{2}^{i j}(T) \text { and } \kappa_{4}^{i j}(T)}
$$

The results for $\kappa_{2}(T), \kappa_{4}(T)$

Our initial guess was not far-off:

- Fairly constant $\kappa_{2}(T)$ over a large T-range
- Clear separation in magnitude between $\kappa_{2}(T)$ and $\kappa_{4}(T)$ hints at better convergence
- Agreement with the HRG model results at low temperatures
- Polynomial fits of $\kappa_{2}(T)$ and $\kappa_{4}(T)$ before use in thermodynamics (good fit qualities)

NOTE: polynomial fits take into account both statistical and systematic correlations.

The results for $\kappa_{2}(T), \kappa_{4}(T)$

A similar picture appears for $\kappa_{n}^{B S}$ and $\kappa_{n}^{S S}$

NOTE: polynomial fits take into account both statistical and systematic correlations.

Thermodynamics at finite (real) μ_{B}

Thermodynamic quantities at finite (real) μ_{B} can be reconstruted from the same ansazt:

$$
\frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}=\hat{\mu}_{B} \chi_{2}^{B}\left(T^{\prime}, 0\right)
$$

with $T^{\prime}=T\left(1+\kappa_{2}^{B B}(T) \hat{\mu}_{B}^{2}+\kappa_{4}^{B B}(T) \hat{\mu}_{B}^{4}\right)$.
From the baryon density n_{B} one finds the pressure:

$$
\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{p(T, 0)}{T^{4}}+\int_{0}^{\hat{\mu}_{B}} \begin{gathered}
\mathrm{d} \hat{\mu}_{B}^{\prime}
\end{gathered} \frac{n_{B}\left(T, \hat{\mu}_{B}^{\prime}\right)}{T^{3}}
$$

then the entropy, energy density:

$$
\begin{aligned}
& \frac{s\left(T, \hat{\mu}_{B}\right)}{T^{4}}=4 \frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\left.T \frac{\partial p\left(T, \hat{\mu}_{B}\right)}{\partial T}\right|_{\hat{\mu}_{B}}-\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}} \\
& \frac{\epsilon\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{s\left(T, \hat{\mu}_{B}\right)}{T^{3}}-\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}
\end{aligned}
$$

And similarly for strangeness-related quantities:

$$
\frac{n_{S}\left(T, \hat{\mu}_{B}\right)}{T^{3}}=\hat{\mu}_{B} \chi_{11}^{B S}\left(T^{\prime}, 0\right) \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We also check the results without the inclusion of $\kappa_{4}(T)$ (darker shades)
- Including $\kappa_{4}(T)$ only results in added error, but does not "move" the results
\longrightarrow Good convergence

- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
- Because of technical/numerical challenges
- Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach (better convergence)
- Thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ have very reasonable uncertainties
- Just as Taylor, systematically improvable if given sufficient computing power
- The EoS for QCD at large chemical potential is highly demanded in HIC community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
- Because of technical/numerical challenges
- Because of phase structure of the theory
- An alternative summation scheme tailored to the specific behavior of relevant observables seems a better approach (better convergence)
- Thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ have very reasonable uncertainties
- Just as Taylor, systematically improvable if given sufficient computing power

THANK YOU!

BACKUP

Rigorous formulation

Similar relations can be derived analogously from:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right), \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

yielding:

$$
\begin{array}{rlrl}
\kappa_{2}^{B S}(T) & =\frac{1}{6 T} \frac{\chi_{31}^{B S}(T)}{\chi_{11}^{B S^{\prime}}(T)} & \kappa_{2}^{S}(T) & =\frac{1}{2 T} \frac{\chi_{22}^{B S}(T)}{\chi_{2}^{S^{\prime}}(T)} \\
\kappa_{4}^{B S}(T) & =\frac{1}{360 \chi_{11}^{B S^{\prime}}(T)^{3}}\left(3 \chi_{11}^{B S^{\prime}}(T)^{2} \chi_{51}^{B S}(T)\right. & \kappa_{4}^{S}(T) & =\frac{1}{24 \chi_{2}^{S^{\prime}}(T)^{3}}\left(\chi_{2}^{S^{\prime}}(T)^{2} \chi_{42}^{B S}(T)\right. \\
\left.-5 \chi_{11}^{B S^{\prime \prime}}(T) \chi_{31}^{B S}(T)^{2}\right) & & \left.-3 \chi_{2}^{S^{\prime \prime}}(T) \chi_{22}^{B S}(T)^{2}\right)
\end{array}
$$

