

Strange Baryons in Nuclei and Neutron Stars

Institute of Space Sciences

Laura Tolós

based on

Laura Tolos and Laura Fabbietti,

Prog. Part. Nucl. Phys. 112 (2020) 103770, 2002.09223 [nucl-ex]

Outline

- Hyperons and where to find them
- YN and YY interactions
- Hypernuclei
- Hyperons in matter
- Hyperons and Neutron Stars
- Present and Future

Hyperons and where to find them

A hyperon is a baryon containing one or more strange quarks

Hyperon	Quarks	1(J ^p)	Mass (MeV)
Λ	uds	O(I/2+)	1115
Σ^{+}	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ-	dds	1(1/2+)	1197
Ξo	USS	1/2(1/2+)	1315
Ξ-	d55	1/2(1/2+)	1321
Ω-	8 88	0(3/2+)	1672

credit: I. Vidana

The study of hypernucleus allows for

- new spectroscopy
- information on strong and weak interactions between hyperons and nucleons

On Earth: Hypernuclei

credit: A. Parreno

In Neutron Stars

YN and YY interactions

hiperon $(\Lambda, \Sigma, \Xi ...)$

- Study strangeness in nuclear physics
- Provide input for hypernuclear physics and astrophysics

Scarce YN scattering data due to the short life of hyperons and the low-density beam fluxes

AN and ΣN : < 50 data points ΞN very few events

NN: > 5000 data for E_{lab} <350 MeV

Data from hypernuclei:

- more than 40 Λ-hypernuclei
 (ΛN attractive)
- few Λ Λ- hypernuclei
 (ΛΛ weak attraction)
- few Ξ-hypernuclei
 (ΞN attractive)
- evidence of 1 Σ-hypernuclei ?
 (ΣN repulsive)

New data on femtoscopy!

Theoretical approaches to YN and YY

Meson exchange models (Juelich/Nijmegen models)

To build YN and YY from a NN meson-exchange model imposing SU(3)_{flavor}

symmetry Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05

Nijmegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10

Chiral effective field theory approach (Juelich-Bonn-Munich group)

To build YN and YY from a chiral effective Lagrangian similarly to NN interaction

Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer,

Petschauer, Kaiser, Meißner, Nogga and Weise '13

Kohno '10: Kohno '18

Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07

Garcilazo, Fernandez-Carames and Valcarce '07 '10

V_{low k} approach

To calculate a "universal" effective low-momentum potential for YN and YY using RG techniques Schaefer, Wagner, Wambach, Kuo and Brown '06

Lattice calculations (HALQCD/NPLQCD)

To solve YN and YY interactions on the lattice

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12

NPLQCD: Beane, Orginos and Savage '11; Beane et al '12

ΛN and **ΣN** scattering

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, et al., NPA 915 (2013) 24 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

$$T = V + V \frac{1}{E_0 - H_0 + i\eta} T$$

p_{lab} (MeV/c)

p_{lab} (MeV/c)

p_{lab} (MeV/c)

New results from femtoscopy for $\Sigma^0 p$

$$C(k^*) = \mathcal{N} \times \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$
$$k^* = \frac{1}{2} \times |\mathbf{p}_1^* - \mathbf{p}_2^*|$$

S. Acharya et al. 2019

Hypernuclei

(sd)

Lifetime

Binding energy of A hypernuclei

Binding energy of different hypernuclei as function of the mass number

Binding energy saturates at about -30 MeV for large nuclei

Single-particle model reproduces the data quite well Gal et al 2016

Hypertriton lifetime puzzle

Expected
$$\tau(^{3}_{\Lambda}H) = \tau(\Lambda)$$
 \Leftrightarrow observed: $\tau(^{3}_{\Lambda}H) < \tau(\Lambda)$

Conflicting measurements by STAR and ALICE of the hypertriton lifetime triggered the revived experimental and theoretical interest

Hyperons in matter

Λ and Σ in dense matter

$$G = V + V \frac{Q_{\text{pauli}}}{E_0 - H_0} G$$

$$k_F = 1.35 \text{ fm}^{-1} \ (\rho_0 = 0.166 \text{ fm}^{-3})$$

	EFT LO	EFT NLO
Λ [MeV]	550 · · · 700	500 · · · 650
<i>U</i> ∧(0)	-38.0 ⋅ ⋅ ⋅ −34.4	−28.2 · · · −22.4
U ∑(0)	28.0 · · · 11.1	17.3 · · · 11.9

- Empirical value of ∧ binding in nuclear matter ~27-30 MeV
- ΣN (I=3/2): 3S_1 - 3D_1 decisive for Σ properties in nuclear matter. YN data can be reproduced with attractive and repulsive 3S_1 - 3D_1 interaction. It is chosen to be repulsive in accordance to data on Σ- atoms and (π -,K+) inclusive spectra for Σ- formation in heavy nuclei. Lattice* supports repulsion!

Haidenbauer and Meißner , NPA 936 (2015) 29

^{*} Nemura et al EPJ Web of Conferences 175 (2018) 05030

A in dense matter: including three-body forces

Three-body forces are required to reproduce few-nucleon binding energies, scattering observables and nuclear saturation in non-relativistic many-body approaches

 $\mu_{\Lambda}(\rho) < \mu_{n}(\rho) \Rightarrow$ energetically favorable to replace n by Λ

the Hyperon Puzzle?

Solution of

D. Gerstung et al. EPJA 56 (2020) 175

A hyperons will not appear in neutron stars (including 3BF)

Hyperons and Neutron Stars

- produced in core collapse supernova explosions, usually observed as pulsars
- usually refer to compact objects
 with M≈1-2 M_☉ and R≈10-12 Km
- extreme densities up to 5-10 ρ_0 (n₀=0.16 fm⁻³ => ρ_0 =3•10¹⁴ g/cm³)
- magnetic field : B ~ 10 8..16 G
- temperature: T ~ 10 6...11 K
- observations: masses, radius (?), gravitational waves, cooling...

Masses

Lattimer '16

Radius

NICER PSR J0030+0451

 R_{eq} = 13.02_{-1.06} +1.24 km M=1.44 _{-0.14} +0.15 M $_{\odot}$ Miller et al. '19

 R_{eq} =12.71_{-1.19}^{+1.14} km M=1.34 _{-0.16}^{+0.15} M $_{\odot}$ Riley et al. '19

NICER PSR J0740+6620

 $\begin{array}{l} {\rm R_{eq}}{=}13.71_{\text{-}1.5}{}^{\text{+}2.6}\,\text{km} \\ {\rm M}{=}2.08\,{}_{\text{-}0.07}{}^{\text{+}0.07}\,{\rm M}_{\odot} \\ {\rm Miller\ et\ al.\ '21} \end{array}$

 R_{eq} =12.39_{-0.98}^{+1.30} km M=2.072_{-0.066}^{+0.067} M $_{\odot}$ Riley et al. '21

Cooling

GW170817

Abbot et al. (LIGO-VIRGO) '17 '18

..also GW190814, GW250419?

The Nucleonic Equation of State

The Equation of State (EoS) is a relation between thermodynamic variables describing the state of matter

Microscopic Ab-initio Approaches:

based on solving the many-body problem starting from two- and three-body interactions

- Variational method: APR, CBF,...
- Quantum Montecarlo : AFDMC...
- Coupled cluster expansion
- Diagrammatic: BBG (BHF), SCGF...
- Relativistic DBHF
- RG methods: SRG from xEFT..
- Lattice methods

Advantage: systematic addition of higher-order contributions

Disadvantage: applicable up to?

(SRG from χ EFT ~ 1-2 n₀)

Phenomenological Approaches:

based on density-dependent interactions adjusted to nuclear observables and neutron star observations

- Non-relativistic EDF: Skyrme..
- Relativistic Mean-Field (RMF) and Relativistic Hartree-Fock (RHF)
- Liquid Drop Model: BPS, BBP,...
- Thomas-Fermi model: Shen
- Statistical Model: HWN,RG,HS...

Advantage: applicable to high densities beyond n₀
Disadvantage: not systematic

What about Hyperons?

First proposed in 1960 by Ambartsumyan & Saakyan

Hyperon	Quarks	1(J ^p)	Mass (MeV)
Λ	uds	0(1/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ-	dds	1(1/2+)	1197
Ξ°	uss	1/2(1/2+)	1315
Έ-	dss	1/2(1/2+)	1321

credit: Vidana

Traditionally neutron stars were modeled by a uniform fluid of neutron rich matter in β -equilibrium

n β-equilibrium
$$n
ightarrow p \; e^- \;
u_e$$

$$p \ e^- \rightarrow n \ \nu_e$$

but more exotic degrees of freedom are expected, such as hyperons, due to:

- high value of density at the center and
- the rapid increase of the nucleon chemical potential with density

Hyperons might be present at $n\sim(2-3)n_0$!!!

β-stable hyperonic matter

 μ_N is large enough to make N->Y favorable

$$n + n \rightarrow n + \Lambda$$

$$p + e^{-} \rightarrow \Lambda + \nu_{e^{-}}$$

$$n + n \rightarrow p + \Sigma^{-}$$

$$n + e^{-} \rightarrow \Sigma^{-} + \nu_{e^{-}}$$

$$\mu_i = b_i \mu_n - q_i \mu_e$$

$$\sum_i x_i q_i = 0$$

credit: Vidana

Inclusion of hyperons....

Credit: Dani P. Page

.... induces a strong softening of the EoS that leads to M_{max}< 2M_☉

Chatterjee and Vidana '16 Vidana '18

The Hyperon Puzzle

The Hyperon Puzzle

Scarce experimental information:

- data from several
 single Λ- and few Ξ hypernuclei, and few double Λ
 hypernuclei
- few YN scattering data
 (~50 points) due to
 difficulties in preparing
 hyperon beams and no
 hyperon targets available
- YN data from femtoscopy

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the EoS that leads to maximum neutron star masses < 2M_©

Solution?

- > stiffer YN and YY interactions
- hyperonic 3-body forces
- \triangleright push of Y onset by Δ -isobars or meson condensates
- quark matter below Y onset
- ➤ dark matter, modified gravity theories...

Future: space missions to study the interior of NS

Constraints from pulse profile modelling of rotation-powered pulsars with eXTP

and multimessenger astronomy

Laboratories: BML, CERN, KEK, Jlab, DAÓNE, GSI, FAIR Reactions: Emulsion data y-rsy data (K. x²) (K. x²) (K. xy x²) (K. xy x²) (X. xy x²) (X. xy x²) (X. xy x²)

Present and Future

A lot of experimental, observational and theoretical effort has been invested to understand hyperons in nuclei and neutron stars

Hyperon-nucleon and hyperon-hyperon interactions are crucial for hypernuclear physics and the physics of compact objects, such as neutron stars

Neutron stars provide a unique scenario for testing hyperons at extreme densities

The future of hyperon physics relies on particle and nuclear experiments as well as X-ray and multimessenger astronomy

