The 19th International Conference on Strangeness in Quark Matter

May 17-22, 2021, sponsored by Brookhaven National Laboratory, Upton, New York

Repulsive properties of hadrons in lattice QCD data and neutron stars

based on 2009.10848 [hep-ph]

Anton Motornenko

Frankfurt Institute for Advanced Studies, Giersch Science Center Institut für Theoretische Physik, Goethe Universität

Frankfurt am Main, Germany

In collaboration with:

Abhijit Bhattacharyya, Somenath Pal, Jan Steinheimer, Horst Stöcker

An approach for QCD EOS: CMF model

Chiral Mean Field model is a single framework for QCD thermodynamics, can be used for

- analysis of lattice QCD data
- description of nuclear matter
- as well as neutron star description

Papazoglou, Schramm, Schaffner-Bielich, Stoecker, Greiner, nucl-th/9706024

Papazoglou, Zschiesche, Schramm, Schaffner-Bielich, Stoecker, Greiner. nucl-th/9806087

Dexheimer, Schramm, 0901.1748

Steinheimer, Schramm, Stoecker 1009.5239

AM, Steinheimer, Vovchenko, Schramm, Stoecker, 1905.00866

QCD phenomenology for the EoS

Stefan-Boltzmann limit T=0

A. Kurkela, P. Romatschke, A. Vuorinen, 0912.1856

Nuclear matter properties

J. Pochodzalla et al., Phys.Rev.Lett. 75 (1995) V. Vovchenko et al., 1506.05763

The CMF phase diagram

hadron gas - hadronic liquid - chiral symmetry restoration - quark matter Two critical points: nuclear CP $T_{CP} \approx 17$ MeV, chiral CP $T_{CP} \approx 17$ MeV

Chiral condensate

The CMF phase diagram

The phase transitions are only driven by hadrons. Deconfinement is always smooth.

CMF: beyond the lattice data

The lattice QCD calculations allow to go beyond the μ_B = 0 by using Taylor expansion which involves conserved charge susceptibilities χ : (Allton et al. hep-lat/0204010)

$$P = P_0 + T^4 \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{B,Q,S}^{i,j,k} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$
$$\chi_{B,Q,S}^{i,j,k} = \frac{\partial^i \partial^j \partial^k P(T, \mu_B, \mu_Q, \mu_S)/T^4}{\partial \left(\mu_B/T\right)^i \partial \left(\mu_Q/T\right)^j \partial \left(\mu_S/T\right)^k}$$

Radius of convergence — distance to the closest singularity of P/T^4 in the complex μ_B/T plane, could be QCD critical point.

One singularity is known at $\mu_B/T=i\pi$ Roberge-Weiss transition (Roberge, Weiss, *Nucl.Phys.B* 275 (1986) 734-745) However, estimates suggest $R_{\mu B/T} \approx 2-3$ (Bazavov et al. 1701.04325, Vovchenko et al. 1711.01261,

In a realistic EOS beyond $\mu_B/T \approx \pi$ the lines of constant pressure depend strongly on density. Interactions and finite baryon density strongly affect the EOS.

Hadron-quark transition in CMF

Excluded Volume triggers the switch between hadron and quark degrees of freedom.

$$ho_i = rac{
ho_i^{\mathrm{id}}(T, \mu_i^* - v_i \, p)}{1 + \sum\limits_j v_j
ho_j^{\mathrm{id}}(T, \mu_j^* - v_j \, p)} \ arepsilon_i = rac{arepsilon_i^{\mathrm{id}}(T, \mu_i^* - v_i \, p)}{1 + \sum\limits_j v_j
ho_j^{\mathrm{id}}(T, \mu_j^* - v_j \, p)}$$

How to constrain excluded volume parameters? Analysis of nucleon phase shifts suggests $v_b = 1 \text{ fm}^3$

(Vovchenko, AM, Gorenstein, Stoecker, 1710.00693)

Flavor dependent EV interactions: QvdW

A study within the Quantum van der Waals model hints: smaller EV size of strange baryons improvement in baryon and strange susceptibilities

Flavor dependent EV interactions: CMF model

Flavor dependent EV interactions: CMF model

Flavor dependent EV interactions: CMF model

Phase structure

The chemical composition is interesting. Small hyperon repulsion allows for hyperon-rich phase at $n_B > 1 \text{ fm}^3$. These densities to be probed in neutron stars.

An important benchmark for the CMF model: the model phase structure is robust to different interaction schemes.

- Nuclear ground state is not affected.
- Chiral phase transition is only slightly changed.

Chemical composition for neutron star matter

Comparison with pQCD for cold matter

PQCD data from: Kurkela, Romatschke, Vuorinen, 0912.1856

CMF gives a reasonable description for hyperon EV parameter $v_{BS}=\frac{1}{4}$ fm³, the favorable value from LQCD data analysis.

The pQCD errorbars are too wide, any scenario fits.

At high mu_B hadrons are suppressed, all parameterizations merge, SB limit is slowly approached.

Neutron stars

The same EOS is used to model neutron stars by solving TOV equation.

Changes in chemical composition affect NS properties only slightly.

As soon as hyperons emerge — NS family is already approaching unstable branch.

Summary

- Susceptibilities are sensitive to hadronic interactions at at T>T_{pc}.
- Lattice QCD data suggests hierarchy in hadron EV repulsion (size). Non-strange baryon excluded volume: v_B=1 fm³, mesons: v_M=1/2 fm³, strange hadrons: v_{BS}=v_{MS}=1/4 fm³.
- Room for improvement:
 Each hadron may be attributed individual EV parameter.
- The CMF phase structure is robust against change in flavor-dependent interaction schemes.
- Interesting scenarios are possible: hyperons melt into quarks at larger densities than non-strange hadrons.
- Hyperons appearance only slightly modifies neutron star properties.

