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An approach for QCD EOS: CMF model
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Chiral Mean Field model is a single 
framework for QCD thermodynamics, can be 
used for
● analysis of lattice QCD data
● description of nuclear matter
● as well as neutron star description
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QCD phenomenology for the EoS
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Hadron Resonance Gas
 

Parity doubling G. Aarts et al., 1710.08294

Nuclear matter properties
 J. Pochodzalla et al., Phys.Rev.Lett. 75 (1995) 
 V. Vovchenko et al., 1506.05763

Stefan-Boltzmann limit T=0
A. Kurkela, P. Romatschke,
 A. Vuorinen,  0912.1856

Stefan-Boltzmann limit μB=0  HotQCD, 1407.6387

Vovchenko,
Gorenstein,
Stoecker, 
1609.03975



The CMF phase diagram
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Three transitions:
hadron gas ➜ hadronic liquid ➜ chiral symmetry restoration ➜ quark matter
Two critical points: nuclear CP TCP≈ 17 MeV, chiral CP TCP≈ 17 MeV 
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The CMF phase diagram
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Motohiro, Kim, Harada, 1505.00988

Parity doublet model with only hadron d.o.f

The phase transitions are only driven by hadrons. Deconfinement is always smooth.

AM, Steinheimer, Vovchenko, Schramm, Stoecker, 1905.00866

https://arxiv.org/abs/1505.00988


CMF: beyond the lattice data 
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The lattice QCD calculations allow to go beyond 
the µ

B
 = 0 by using Taylor expansion which 

involves conserved charge susceptibilities χ: 
(Allton et al. hep-lat/0204010) 

Radius of convergence — distance to the closest 

singularity of P/T4 in the complex μB/T plane, 

could be QCD critical point.

One singularity is known at μ
B

/T=i𝜋 
Roberge-Weiss transition
(Roberge, Weiss, Nucl.Phys.B 275 (1986) 734-745)

However, estimates suggest RμB/T
≈2-3 (Bazavov et al. 

1701.04325, Vovchenko et al. 1711.01261,

Giordano et al. 1911.00043)

AM, Vovchenko, Steinheimer, Schramm, Stoecker, 
QM 2019, 2002.01217

In a realistic EOS beyond μ
B

/T≈π the lines of 
constant pressure depend strongly on density.
Interactions and finite baryon density strongly 
affect the EOS.

https://arxiv.org/abs/hep-lat/0204010
https://arxiv.org/abs/1701.04325
https://arxiv.org/abs/1711.01261
https://arxiv.org/abs/1911.00043


Hadron-quark transition in CMF
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V. Vovchenko, D. Anchishkin, M. Gorenstein, 1412.5478

Vovchenko, Anchishkin, Gorenstein, 1412.5478

CMF model:
Excluded volume 
interactions 
suppress hadrons

Excluded Volume triggers the 
switch between hadron and quark 
degrees of freedom.

How to constrain excluded volume parameters?
Analysis of nucleon phase shifts suggests v

b
=1 fm3

(Vovchenko, AM, Gorenstein, Stoecker, 1710.00693)



Flavor dependent EV interactions: QvdW
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Vovchenko, AM, Alba, Gorenstein, Satarov, Stoecker, 1707.09215

A study  within the Quantum van der Waals model hints: 
smaller EV size of strange baryons          improvement in baryon and strange susceptibilities



Flavor dependent EV interactions: CMF model

9

Variation of hyperons size

Smaller EV sizes of hyperons 
and mesons as compared to 
non-strange baryons help to 
describe the lattice data.

The lattice data on second order 
susceptibilities are sensitive to 
hadron sizes at T>T

pcB — non-strange baryon
BS — strange baryon
M — non-strange meson
MS — strange meson



Flavor dependent EV interactions: CMF model
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v
B

= 1 fm3 , v
M

=½ fm3, v
BS

=v
MS

= 
¼ fm3, provides a description 
for most correlators.

The hadron repulsion strength 
has the following hierarchy 
non-strange baryons ￫ 
non-strange mesons ￫ 
strange hadrons

Variation of mesons size

B — non-strange baryon
BS — strange baryon
M — non-strange meson
MS — strange meson



Flavor dependent EV interactions: CMF model
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Variation of mesons size

In principle, each hadron specie can 
be attributed a separate EV 
parameter. 
All hadrons have different masses, 
different cross-sections, why not 
different repulsion coefficients?..                                               

v
B

= 1 fm3 , v
M

=½ fm3, v
BS

=v
MS

= 
¼ fm3, provides a description 
for most correlators.

The hadron repulsion strength 
has the following hierarchy 
non-strange baryons ￫ 
non-strange mesons ￫ 
strange hadrons



Phase structure
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An important benchmark for the CMF model:
the model phase structure is robust to different 
interaction schemes.
● Nuclear ground state is not affected.
● Chiral phase transition is only slightly changed.

The chemical composition is interesting.
Small hyperon repulsion allows for 
hyperon-rich phase at n

B
>1 fm3.

These densities to be probed in neutron stars.



Chemical composition for neutron star matter
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The same CMF model, 
the same parametrizations, 
electrons are present to 
maintain ꞵ-equilibrium.

Hyperons have smaller 
EV-size — they are 
suppressed at larger 
densities. 
A new scenario:
All non-strange baryons are 
melted into quarks,
but hyperons still survive.



Comparison with pQCD for cold matter
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PQCD data from:
Kurkela, Romatschke, Vuorinen, 0912.1856

CMF gives a reasonable description 
for hyperon EV parameter v

BS
=¼ fm3, 

the favorable value from LQCD data 
analysis.

The pQCD errorbars are too wide, 
any scenario fits.

At high mu
B

 hadrons are suppressed, 
all parameterizations merge,
SB limit is slowly approached. 



Neutron stars
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The same EOS is used to model 
neutron stars by solving TOV 
equation.

Changes in chemical composition 
affect NS properties only slightly.

As soon as hyperons emerge — NS 
family is already approaching 
unstable branch.



Summary
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● Susceptibilities are sensitive to hadronic interactions at at T>Tpc.
● Lattice QCD data suggests hierarchy in hadron EV repulsion (size). Non-strange baryon 

excluded volume: vB=1 fm3, mesons: vM=1/2 fm3, strange hadrons: vBS=vMS=1/4 fm3.

● Room for improvement:
Each hadron may be attributed individual EV parameter.

● The CMF phase structure is robust against change in flavor-dependent interaction schemes.
● Interesting scenarios are possible: hyperons melt into quarks at larger densities than 

non-strange hadrons.
● Hyperons appearance only slightly modifies neutron star properties.

Thanks for your attention!


