Quarkonium as a probe of the QGP and of the initial stages of the heavy-ion collision with ALICE

Ingrid McKibben Lofnes for the ALICE collaboration University of Bergen, Norway

Online Strangeness in Quark Matter Conference 17-22 May 2021

Quarkonium production in heavy-ion collisions

- Heavy quarks (charm and beauty)
 - Produced in initial hard partonic scattering
 → experience full evolution of heavy-ion collision
 - Natural probe to study the properties of the hot and dense medium

Quarkonium production

- · Sensitive to medium produced in heavy-ion collisions
- → Suppression: color screening and medium-induced dissociation Matsui and Satz: PLB 178 (1986) 416-422

A. Rothkopf: PR 858 (2020) 1-117

→ At LHC energies: (re)combination of uncorrelated heavy-quark pairs

P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196 Thews, Schroedter, Rafelski: PRC 63 (2001) 054905

Quarkonium production in heavy-ion collisions

• The medium effect is quantified using the nuclear modification factor:

$$R_{
m AA} = rac{{
m d}N_{
m AA}/{
m d}p_{
m T}}{\langle N_{
m coll}
angle imes {
m d}N_{
m pp}/{
m d}p_{
m T}}$$

- ${\it R}_{{\sf A}{\sf A}}
 eq 1$ means that there are cold or hot matter effects
- Anisotropic flow:
 - Look at the azimuthal dependence of particle production

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \sim 1 + 2\sum_{n} \left[v_n \cos[n(\phi - \Psi_n)] \right]$$

- Initial spatial anisotropy ightarrow momentum-space anisotropy
- Polarization:
 - · Measure anisotropies in the angular distribution of the decay products

$$W(\cos heta, \phi) \propto rac{1}{3 + \lambda_{ heta}} \cdot (1 + \lambda_{ heta} \cos^2 heta + \lambda_{\phi}) \sin^2 heta \cos 2\phi + \lambda_{ heta \phi} \sin 2 heta \cos \phi)$$

Quarkonium measurements in ALICE

${\rm J}/\psi$ nuclear modification factor, ${\it R}_{\rm AA}$

- Weaker suppression at lower p_T, especially at midrapidity
 - \rightarrow Consistent with J/ ψ (re)generation scenario
- J/ ψ R_{AA} larger at LHC than at RHIC despite much larger energy density
- Similar suppression observed at $\sqrt{s_{\rm NN}} = 2.76$ TeV and 5.02 TeV

Published results using 2015 data: PLB805 (2020) 135434, JHEP02 (2020) 041

Quarkonium nuclear modification factor

- J/ ψ R_{AA} shows a strong $p_{\rm T}$ dependence
- $\Upsilon(1S) R_{AA}$ shows a flat p_T dependence
- Models describe trend within uncertainties
 → Unable to discriminate between
 (re)generation inside QGP or at phase boundary

Published results using 2015 data: PLB805 (2020) 135434 Ingrid Lofnes — University of Bergen — Online SQM 2021

$\Upsilon(1S)$ R_{AA} , forward rapidity

Statistical Hadronization Model PLB797 (2019) 134836 All charmed particles generated at chemical freeze-out

 $\label{eq:product} \begin{array}{c} \mbox{Transport Model} \\ \mbox{NPA943 (2015) 147, PRC96 (2017) 054901} \\ \mbox{Interplay of dissociation and regeneration inside QGP} \end{array}$

Hydrodynamics Universe (2016) 2(3) 16

Thermal modification of heavy-quark potential inside anisotropic plasma

$\Upsilon(1S), \Upsilon(2S)$ nuclear modification factor Forward rapidity

- Stronger suppression towards more central collisions
 - \rightarrow Models reproduce observed trend within uncertainties
- Hint of decreasing $\Upsilon(1S) R_{AA}$ at forward rapidity
 - \rightarrow Coupled Boltzmann eq. predict a slight increase (hydrodynamics model shows similar issue vs y)

0.5 1 1.5 2 2.5 3 3.5 4 y Transport Model PRC96 (2017) 054901 Interplay of dissociation and regeneration inside QGP

Coupled Boltzmann equations JHEPO1 (2021) 046 Regeneration dominated by real-time recombination of correlated heavy-quark pairs

- Positive J/ ψ v₂ up to high- p_{T} ightarrow underestimated by transport model above 4 GeV/c
 - Described by spatial-momentum correlations?
- $\Upsilon(1S) v_2$ compatible with 0 with large uncertainties
 - \rightarrow significantly lower than inclusive J/ $\psi~v_2$
 - \rightarrow consistent with models predicting little or no (re)generation

TAMU PRC96 (2017) 054901 BBJS PRC 100 (2019) 051901 ALICE

${\rm J}/\psi$ elliptic flow (v_2)

Forward and midrapidity

- v₂ grows from central to semicentral collisions
- Clear mass hierarchy at low p_T: v₂(π) > v₂(D) > v₂(J/ψ)

• Species independent v_2 at high $p_T \rightarrow$ suggests path-length dependent energy-loss effects

${\rm J}/\psi$ triangular flow (v_3)

Forward rapidity

 $J/\psi - forward rapidity$ $\pi - midrapidity$ D - midrapidityD - midrapidity, CMSPRL 120 (2018) 202301

- Little centrality dependence
- Positive $v_3 \rightarrow$ initial state energy-density fluctuations reflected in charm quark flow

- Observed mass hierarchy for v_2 and v_3
 - \rightarrow supports hypothesis of charm quarks being kinetically equilibrated in QGP medium

Constituent-quark scaling

JHEP10 (2020) 141

- Flow of light and strange particles scale approximatly with number of constituent quarks (NCQ)
- Extend NCQ scaling to D mesons: • \rightarrow Assume $v_2(p_T)$ derived by NCQ scaling

$$\begin{split} v_2^c(p_{\mathsf{T}}^c) &= v_2^{\mathsf{J}/\psi}(2p_{\mathsf{T}}^c)/2 \\ v_2^q(p_{\mathsf{T}}^q) &= v_2^\pi(2p_{\mathsf{T}}^q)/2 \\ & \downarrow \\ v_2^D(p_{\mathsf{T}}^D) &= v_2^q(p_{\mathsf{T}}^q) + v_2^c(p_{\mathsf{T}}^c) \end{split}$$

- Scaling depends on the assumed p_{T} fraction carried by each constituent
 - \rightarrow Best agreement with measured D-meson flow for equal or nearly equal $p_{\rm T}$ fraction

First measurement of J/ψ polarization in Pb–Pb collisions

Forward rapidity

 $egin{aligned} & (\lambda_{ heta},\lambda_{\phi},\lambda_{ heta\phi}) = (0,0,0)
ightarrow \mbox{No polarization} \\ & (\lambda_{ heta},\lambda_{\phi},\lambda_{ heta\phi}) = (-1,0,0)
ightarrow \mbox{Pure longitudinal} \\ & (\lambda_{ heta},\lambda_{\phi},\lambda_{ heta\phi}) = (+1,0,0)
ightarrow \mbox{Pure transverse} \end{aligned}$

- · Polarization parameters are close to zero
- λ_θ shows a maximum 2σ deviation w.r.t zero in both reference frames for 2 < p_T < 4 GeV/c
- Compatible with ALICE pp results
- 3σ difference with LHCb pp results in Helicity → reflect different production and suppression mechanisms Pb–Pb w.r.t pp collisions?

First measurement of J/ ψ polarization in Pb–Pb collisions

Forward rapidity

 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) \rightarrow \text{No polarization}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) \rightarrow \text{Pure longitudinal}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (+1, 0, 0) \rightarrow \text{Pure transverse}$

- Flat trend for all polarization parameters as a function of centrality
- Non-zero λ_{θ} observed in both reference frames
- Polarization measurement w.r.t. event plane underway → study effects related to the large angular momentum of the two colliding ions and the intense magnetic field produced in heavy-ion collisions

First measurement of $\Upsilon(1S)$ polarization in Pb–Pb collisions

Forward rapidity

PLB 815 (2021) 136146

 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) \rightarrow \text{No polarization}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) \rightarrow \text{Pure longitudinal}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (+1, 0, 0) \rightarrow \text{Pure transverse}$

- Polarization parameters compatible with zero •
- Significantly limited by available statistics •

Low $\textit{p}_{\rm T}~{\rm J}/\psi$ excess

Forward rapidity

- Preliminary measurement of J/ ψ $R_{\rm AA}$ at very low $p_{\rm T}$
 - Increasing R_{AA} in peripheral collisions for $p_T < 0.3 \text{ GeV}/c$ \rightarrow Systematically larger than the hadronic R_{AA} in the p_T reference interval 1-2 GeV/c
- Coherent J/ ψ photoproduction suggested as underlying physics mechanism \rightarrow photonuclear cross section probes the gluon density at very low Bjorken-x (LHC energies: $x \sim 10^{-5} - 10^{-2}$)

Coherent ${\rm J}/\psi$ photoproduction cross section

Forward rapidity

- Increase in cross section with increasing collision energy
- Models implementing modification of photon flux (purely electromagnetic) w.r.t. ultra-peripheral collisions (UPC)
- Qualitative agreement in peripheral collisions
- Deviations in semicentral events
 → insufficient model description?

Conclusions

Quarkonium as a probe of the QGP and initial stages of heavy-ion collisions

- Nuclear modification factor
 - J/ ψ R_{AA} consistent with significant contribution from (re)generation
 - $\Upsilon(1S), \Upsilon(2S)$ show strong suppression
- Elliptic and triangular flow
 - $\Upsilon(1S)$ v₂ significantly lower than J/ ψ v₂
 - Clear mass hierarchy observed for $J/\psi v_2$ and v_3 w.r.t. D mesons at low $p_T \rightarrow$ supports hypothesis of charm quark thermalization within the medium
- Polarization
 - First measurement of J/ ψ and $\Upsilon(1S)$ polarization in Pb–Pb collisions
 - J/ ψ exhibits a maximum 2 σ deviation w.r.t. zero for $\lambda_{ heta}$
- Coherent photoproduction
 - Preliminary measurements of coherent ${\sf J}/\psi$ photoproduction
 - Qualitatively reproduced by UPC-based models in peripheral collisions
 - Deviations in semicentral collisions

Thank you for your attention!

Backup

Nuclear modification factor models - charmonium

Statistical Hadronization Model PBL797 (20199 134836

- Heavy quarks produced during initial hard partonic interactions followed by thermalization in QGP
- Subsequent formation of bound states at phase boundary according to thermal weights

Transport models NPA943 (2015) 147, PRC89 (2014) 054911

- Continuous generation, dissociation and regeneration inside QGP
- Governed by a set of rate equations

Comover model PBL 731 (2014) 57, JHEP 10 (2018) 094

- Dissociation by scattering of comoving partons and hadrons
- Includes a (re)generation component depending on the primordial charm quark cross section

Nuclear modification factor models - bottomonium

Transport models PRC96 (2017) 054901

- Continuous generation, dissociation and regeneration inside QGP
- Band width: modification of the PDF modelled by effective scale factor of initial number of $b\bar{b}$ pairs

Comover model JHEP 10 (2018) 094, JHEP 03 (2019) 063

- Dissociation via interaction with surrounding particles in final state
- Uncertainties from nCTEQ15 shadowing

Hydrodynamics Universe (2016) 2(3) 16

- Thermal modification of complex heavy-quark potential inside anisotropic plasma
- Survival probability evaluated based on the local energy density
- Does not include any modification of nuclear PDFs or regeneration phenomenon

Coupled Boltzmann equations JHEP 01 (2021) 046

- Regeneration dominated by recombination of correlated heavy-quark pairs
- Derived from open quantum system
- Theoretical bands due to nPDF uncertainties

NCQ scaling

 V_2 V_3 S^N 0.2 ALICE Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-10% າ 2>^ຕ Inclusive J/w • 2.5 < y < 4Scaled $V_{p}^{D} = V_{q}^{q} + V_{q}^{c}$ + |v| < 0.9--- Fitted V 0 $\alpha \pi^{\pm}, |v| < 0.5$ Syst. uncertainty (uncorrelated) -0. 0.1 10-30% $\frac{-p_{T}^{q}/p_{T}^{D} = 0.5}{-Best \chi^{2}, p_{T}^{q}/p_{T}^{D} = 0.4}$ > 0.2 125 $-p_{\pi}^{q}/p_{\pi}^{D} = 0.2$ 0. -0.1 30-50% ×° 0.2 • Prompt D^0 , |y| < 1, CMS 0.2 > Syst. uncertainty from data Syst. uncertainty non-prompt_0 1 0. -0. 10 12 14 16 10 12 14 16 8 2 4 4 p₁ (GeV/c) p₁ (GeV/c) ALI-PUB-483386

- Scaling works well for both v₂ and v₃
- Based on simplified underlying physics assumptions

Coherent J/ψ photoproduction cross section

centrality 50 - 70%

Models with effective description of the photon flux w.r.t. ultra peripheral collisions (UPC): Energy dependent hot-spot model

PRC97 (2018) 024901

- GG-hs: Glauber Gribov formalism
- GS-hs: Geometric scaling
- Qualitative agreement with models within uncertainties

Dipole model

PRD97 (2018) 116013

- GBW: Ligth cone color dipole formalism
- IIM: Color Glass Condensate approach