

Prompt and non-prompt $D_{\rm s}^+$ production in pp and Pb–Pb with ALICE

19th International Conference on Strangeness in Quark Matter

Fabio Catalano on behalf of the ALICE Collaboration 20^{th} May 2021

Politecnico and INFN Torino, Italy

fabio.catalano@cern.ch

ALICE

- ► Large masses of charm and beauty quarks → produced in hadronic collisions from hard parton-scattering processes
- proton-proton collisions
 - test of perturbative-QCD calculations
 - insights on heavy-flavour hadronisation
 - reference for p-Pb and Pb-Pb measurements
- Pb–Pb collisions
 - heavy quarks produced before quark-gluon plasma (QGP) formation
 - experience the full evolution of the system
 - strongly interacting with the medium

A Large Ion Collider Experiment

D_s^+ -meson reconstruction

ALICE

$D_{\rm s}^+$ mesons are measured via their resonant hadronic decay

Meson	$M \; ({ m GeV}/c^2)$	$c au~(\mu { m m})$	Decay	BR (%)
D^+_s (cs)	~ 1.968	~ 151	$\varphi(\rightarrow {\rm K^-K^+})\pi^+$	~ 2.24

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

- Candidates built from triplets of tracks at midrapidity (|η| < 0.8) with proper charge-sign combination
- To reduce the combinatorial background
 - particle identification of decay tracks
 - geometrical and kinematic selections based on displaced decay-vertex topology
- ▶ Machine learning (ML) tools for candidate selection

$\blacktriangleright \ D_s^+$ mesons

- Prompt, from charm-quark hadronisation or excited charm-hadron decays
- Non-prompt, from beauty-hadron decays

▶ Non-prompt D_s^+ mesons → beauty-quark production - ~ 50% from B_s^0 decays and ~ 50% from non-strange B

- \blacktriangleright D⁺_s mesons
 - Prompt, from charm-quark hadronisation or excited charm-hadron decays
 - Non-prompt, from beauty-hadron decays

- ▶ Non-prompt D_s^+ mesons → B_s^0 -meson production - ~ 50% from B_s^0 decays and ~ 50% from non-strange E
- \blacktriangleright Possible to disentangle prompt and non-prompt $D_{\rm s}^+$
 - beauty hadrons have $c\tau\simeq 500~\mu{\rm m}$
 - non-prompt D^+_s on average more displaced from the
 - interaction vertex
 - different topology and kinematic features
- \blacktriangleright ML to separate prompt D_s^+ mesons, non-prompt D_s^+ mesons and combinatorial background

D_s^+ production in pp collisions at 5 TeV — pQCD calculations

FONLL: M. Cacciari et al. JHEP 1210 137 (2012) PYTHA8: T. Sjöstrand et al. JHEP 05 026 (2006) GM-VFNS: G. Kramer et al, Nucl. Phys. B 925 415-430 (2017) T. Kneesch et al. Nucl. Phys. B 799 34-59 (2008)

- GM-VFNS calculations describe within uncertainties the prompt D⁺_s-meson measurement
- \blacktriangleright FONLL calculations not available for prompt $D_{\rm s}^+$

 \blacktriangleright Non-prompt $\mathrm{D}^+_{\mathrm{s}}$ compatible with FONLL central values and underestimated by GM-VFNS

- FONLL $f(b \rightarrow H_b)$ FFs from e^+e^- and PYTHIA8 to describe $H_b \rightarrow D_s^+ + X$ decays
- GM-VFNS \twoheadrightarrow "single-step" description of ${\rm b} \to {\rm D}_{\rm s}^+ + X$ using FF from ${\rm e^+e^-}$ measurements

20/05/2021

D-meson yield ratios in pp collisions

- D-meson ratios flat in $p_{\rm T}$ and in good agreement with FONLL calculations
 - Compatible prompt and non-prompt $\mathrm{D}^+/\mathrm{D}^0$ ratios
 - $\rm D_s^+/(\rm D^0+\rm D^+)$ ratio higher for non-prompt D mesons. Substantial $\rm B_s^0-decay$ contribution

20/05/2021

Charm-quark fragmentation fractions in pp collisions

PYTHIA8: P. Skands et al. EP IC 74 3024 (2014) LEP: L. Gladilin EP.IC 75 19 (2015) H1: EPJC 38 447-459 (2005)

ZEUS: IHEP 09 058 (2013) ATLAS: Nucl. Phys. B 907 717-763 (2016). ALICE, 7 TeV: PLB 718 279-294 (2012)

D mesons: arXiv:2102.1360

- Charm-quark $f_{\rm s}/(f_{\rm u}+f_{\rm d})$ ratio from constant fit to prompt $D_{-}^{+}/(D^{0} + D^{+})$
- Very precise measurement in agreement with previous observations
- Compatible with PYTHIA8 Monash-13 tune simulations (2.7 σ)

$$\left(rac{f_{
m s}}{f_{
m u}+f_{
m d}}
ight)_{
m charm}=0.137\pm0.005~{
m (stat)}$$

 $\pm0.008~{
m (tot.syst)}$

ALI-PUB-482597

Beauty-guark fragmentation fractions in pp collisions

PYTHIA8: P. Skands et al. EP IC 74 3024 (2014) LEP: Y. Amhis et al. (HELAV) arXiv:1909.12524 CDE: Phys. Rev. D 77 072003 (2008)

ATLAS: PRI 115 262001 (2015) LHCb. 7 TeV: Phys. Rev. D 85 032008 (2012) LHCb. 13 TeV: Phys. Rev. D 100 031102 (2019)

D mesons: arXiv:2102.1360

- Beauty-guark $f_s/(f_u + f_d)$ from constant fit to non-prompt $D_{-}^{+}/(D^{0} + D^{+})$ ratio
- Correction to account for non-prompt D_s^+ mesons from B^0 and B^+ decays
- Value compatible with previous measurements and PYTHIA8

$$\left(rac{f_{
m s}}{f_{
m u}+f_{
m d}}
ight)_{
m beauty} = 0.127 \pm 0.036 \; {
m (stat)} \ \pm 0.014 \; {
m (tot.syst)}$$

ALI-PUB-482601

- Strong suppression of D-meson R_{AA} in central Pb–Pb collisions
 - factor ~ 5 in magnitude at 8 12 ${\rm GeV}/c$
- ► Hint of reduced suppression for D⁺_s w.r.t. non-strange D mesons at p_T < 8 GeV/c</p>
 - expected for hadronization via coalescence + strangeness enhancement in the QGP

I. Kuznetsova et al. EPJ C51 113 (2007)

- Strong suppression of D-meson R_{AA} in central Pb–Pb collisions
 - factor \sim 5 in magnitude at 8 12 ${
 m GeV}/c$
- ► Hint of reduced suppression for D⁺_s w.r.t. non-strange D mesons at p_T < 8 GeV/c</p>
 - expected for hadronization via coalescence + strangeness enhancement in the QGP
 I. Kuznetsova et al. EPJ C51 113 (2007)
- Charm-quark transport models including coalescence describe the hierarchy
 R_{AA}(D⁺_s) > R_{AA}(D)

Strange and non-strange prompt D-meson elliptic flow

- Positive v₂ of prompt D mesons → charm quarks participate in the QGP collective motion
- No significant difference between strange and non-strange D mesons

Strange and non-strange prompt D-meson elliptic flow

- Positive v₂ of prompt D mesons → charm quarks participate in the QGP collective motion
- No significant difference between strange and non-strange D mesons
- Strange and non-strange D-meson elliptic flow reproduced by TAMU and PHSD models

Non-prompt D_s^+ -meson R_{AA}

 \blacktriangleright First measurement of non-prompt $\rm D_s^+$ mesons in central (0-10%) Pb–Pb collisions

▶ Hint of larger R_{AA} than prompt D_s^+ and non-prompt D^0 mesons in the low p_T region

20/05/2021

TAMU: M. He et al. PLB 735 445-450 (2014)

- ▶ Indication of smaller suppression of D_s^+ mesons from B-meson decays than prompt ones below ~ 8 GeV/c
 - described by TAMU model predictions

 Interplay of charm and beauty energy loss and recombination in the medium

ALI-PREL-486719

Non-prompt and prompt D-meson R_{AA}

20/05/2021

Strange and non-strange meson R_{AA}

CMS: PLB 796 168-190 (2019) TAMU: M. He et al. PLB 735 445-450 (2014)

- ► R_{AA}(D⁺_s)/R_{AA}(D⁰) ratio for non-prompt above one at low p_T
 - B⁰_s-production enhanced by beauty hadronisation via coalescence
- TAMU model describes the observed trend

- ► Larger R_{AA}(B⁰_s)/R_{AA}(B⁺) ratio than non-prompt D
 - $\rm D_s^+$ from non-strange B-meson decays
 - different decay kinematics

20/05/2021

Prospects for Run 3

- Major upgrade of ALICE detectors and read-out electronics ongoing
 - increase collected Pb-Pb luminosity by more than 50 times
 - upgraded Inner Tracking System (ITS2) → improved track and secondary-vertex resolution

Measurements of $B_s^0 R_{AA}$ and non-prompt $D_{s}^{+} v_{2}$ possible with good precision

F. Reidt, 19th May 14:25

Conclusions

- Prompt and non-prompt D⁺_s mesons measured in pp collisions
 - potential to constrain pQCD calculations
 - precise study of charm and beauty hadronisation
- In Pb–Pb collisions
 - non-prompt D_s^+ measured for the first time
 - insights into heavy-flavour recombination
 - charm quarks participate in the QGP collective motion
- Just an appetizer for ALICE measurements of Run 3 with upgraded detectors and larger data samples

Backup

- ► Heavy flavours (c and b quarks) produced in hadronic collisions from hard-scattering processes
- Production described with perturbative QCD calculations based on the factorisation theorem

 $\sigma_{\rm hh \rightarrow Hh} = \textit{PDF}(x_{\rm a}, Q^2) \; \textit{PDF}(x_{\rm b}, Q^2) \otimes \sigma_{\rm ab \rightarrow q\bar{q}} \otimes \textit{D}_{\rm q \rightarrow h}(z_{\rm q}, Q^2)$

Parton distribution functions (non perturbative) Partonic cross section (perturbative) Fragmentation functions (non perturbative)

Quark-Gluon Plasma in ultra-relativistic heavy-ion collisions

Quantum chromodynamics (QCD) calculations predict a phase transition of nuclear matter to a colour-deconfined medium, the quark–gluon plasma (QGP), under extreme conditions of temperature and/or density

▶ The QGP can be created in the laboratory by ultra-relativistic heavy-ion collisions

20/05/2021

Heavy flavours in Pb–Pb collisions — Observables

Heavy flavours propagate through the QGP and interact with the medium constituents

- **•** Energy loss via elastic scatterings and gluon radiation
 - nuclear modification factor R_{AA}

$$R_{\mathrm{AA}}\left(p_{\mathrm{T}}
ight) = rac{1}{\langle N_{coll}^{\mathrm{AA}}
angle} rac{\mathrm{d}N_{\mathrm{AA}}/p_{\mathrm{T}}}{\mathrm{d}N_{\mathrm{pp}}/p_{\mathrm{T}}}$$

- Participation in the fireball collective motion
 - azimuthal anisotropy of produced particle momenta

 $v_2 = \langle \cos[2(arphi - \Psi_2)]
angle$

Hadronisation via recombination in the medium

- $p_{\rm T}$ -dependent yield ratios, $R_{\rm AA}$ and v_2 of different hadron species

Prompt and non-prompt D_s^+ mesons

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

- \blacktriangleright D⁺_s mesons
 - Prompt, from charm-quark hadronisation or excited charm-hadron decays
 - Non-prompt, from beauty-hadron decays

- ► Non-prompt D mesons → beauty-quark production and hadronisation
 - different B-meson contributions for each D species

	from \mathbf{B}^0	$\text{from }\mathbf{B}^+$	from $\mathbf{B}_{\mathrm{s}}^{0}$
non-prompt \mathbf{D}^0	$\sim 40\%$	\sim 60%	_
non-prompt \mathbf{D}^+	$\sim 75\%$	$\sim 25\%$	_
non-prompt $\mathbf{D}_{\mathrm{s}}^+$	$\sim 25\%$	$\sim 20\%$	$\sim 55\%$

(PDG BRs and FFs from $Z \to b \bar{b}$ decays, contributions from baryons negligible)

Analysis tools — Supervised machine learning

- Supervised ML models "learn" to make predictions from a set of examples, where the correct classification is known
- They can perform more complex selections w.r.t. the linear selections traditionally used

- ▶ To train the model a training set is needed. It is built from
 - − Monte Carlo productions → prompt and non-prompt D mesons
 - data collected by the experiment → combinatorial background from sidebands of invariant-mass distribution
- ► After the training, the ML model is used to predict the class of unknown particle candidates

Analysis tools — Multi-class classification

- Multi-class Boosted Decision Trees (BDT) employed to separate prompt D mesons, non-prompt D mesons and combinatorial background
 - different BDTs for D^0 , D^+ and D_s^+ mesons and for different transverse-momentum (p_T) intervals

- BDT input: candidate kinematic, geometrical and PID quantities
- BDT output: 3 scores related to the candidate probability to be prompt, non-prompt and background
- Selections applied on these scores to reduce combinatorial background and reject prompt or non-prompt D mesons

Non-prompt D mesons — Selection efficiencies

- ► Non-prompt D-meson measurements → selections on BDT scores tuned to suppress the prompt contribution and enhance the non-prompt one in the raw yields
- Prompt efficiencies smaller by a factor $\sim 5-700$ depending on the species and $p_{\rm T}$

20/05/2021

Non-prompt D mesons — Raw-yield extraction

- $\blacktriangleright~D^0$, D^+ and D_s^+ yields extracted from fit to the invariant-mass distributions of particle candidates
- ► Enhanced fraction of non-prompt D mesons in the raw yields → estimated with a data-driven approach

20/05/2021

Data-driven estimation of non-prompt fraction

- Define *n* sets of selections with different prompt and non-prompt D-meson contributions
- For each selection set the raw yield and the efficiencies are related to the corrected yields of prompt N_{prompt} and non-prompt N_{non-prompt} D mesons

$$\begin{cases} (\operatorname{Acc} \times \epsilon)_{1}^{\operatorname{prompt}} \cdot N_{\operatorname{prompt}} + (\operatorname{Acc} \times \epsilon)_{1}^{\operatorname{non-prompt}} \cdot N_{\operatorname{non-prompt}} = Y_{1} \\ \dots \\ (\operatorname{Acc} \times \epsilon)_{n}^{\operatorname{prompt}} \cdot N_{\operatorname{prompt}} + (\operatorname{Acc} \times \epsilon)_{n}^{\operatorname{non-prompt}} \cdot N_{\operatorname{non-prompt}} = Y_{n} \end{cases}$$

20/05/2021

Data-driven estimation of non-prompt fraction

 Define *n* sets of selections with different prompt and non-prompt D-meson contributions

 Corrected yields of prompt and non-prompt D mesons obtained from χ² minimization of the system

Data-driven estimation of non-prompt fraction

- Define n sets of selections with different
- Corrected viel

Ids of prompt and non-prompt D
ned from
$$\chi^2$$
 minimization of the
"Natural" $f_{non-prompt}$ (FONLL + PYTHIA)
 D^0 , D^+ D_s^+

• Non-prompt fraction $f_{non-prompt}$ evaluated for a given set of selections as

$$f_{\text{non-prompt}}^{i} = \frac{(\text{Acc} \times \epsilon)_{i}^{\text{non-prompt}} \cdot \textit{N}_{\text{non-prompt}}}{(\text{Acc} \times \epsilon)_{i}^{\text{non-prompt}} \cdot \textit{N}_{\text{non-prompt}} + (\text{Acc} \times \epsilon)_{i}^{\text{prompt}} \cdot \textit{N}_{\text{prompt}}}$$

20/05/2021

F. Catalano (PoliTo and INFN)

 $f_{\mathsf{non-prompt}}$

0.8

ALT-PUB-482537

ALICE

▲ D⁺ + D_{s}^{+}

pp, $\sqrt{s} = 5.02 \text{ TeV}$

18

16

20 22 24

p_ (GeV/c)

b-hadron	Fraction at Z (%)	Fraction at $\mathrm{p}ar{\mathrm{p}}$ (%)
B^{0} , B^{+}	40.8 ± 0.7	34.4 ± 2.1
$\mathrm{B_s^0}$	10.0 ± 0.8	11.5 ± 1.3
$\Lambda_{ m b}^0$	8.4 ± 1.1	19.8 ± 4.6

- Prompt and non-prompt D mesons measured down to very low transverse momenta
- Prompt D⁰ from EPJC 79 388 (2019)
- Prompt D⁺ and D⁺_s measurements updated using ML → larger p_T reach w.r.t. previous results

20/05/2021

Results — Non-prompt over prompt ratios

Prompt D⁰: EPJC 79 388 (2019)

- Cross section ratios of non-prompt and prompt D mesons increase with p_T up to 12 GeV/c
 - beauty-hadron $p_{\rm T}$ distribution harder than D mesons
- Hint of larger ratio for D_s^+ mesons
 - larger contribution of beauty-hadron decays compared to non-strange D mesons

$$b\to c\bar c s \qquad \bar b\to c\bar c \bar s$$

Prompt D^+ and D^+_{\circ} cross sections vs. 2019 paper

• Measurement of prompt D^+ and D_s^+ mesons updated using ML \rightarrow extension to lower transverse momenta w.r.t. 2019 result

ALI-PUB-482557

Results — Beauty-guark production cross section

Dielectron: Phys. Rev. C 102 055204 (2020) FONLL: M. Cacciari et al. JHEP 1210 137 (2012) NNLO: S. Catani et al. JHEP 03 029 (2021)

 \triangleright p_T-differential non-prompt D-meson measurement \rightarrow p_T-integrated cross section \rightarrow bb production cross section at midrapidity

- D-meson average compatible with previous ALICE measurements
- Good agreement with FONLL and calculations including NNLO QCD radiative corrections

$$\left. \frac{\mathrm{d}\sigma_{\mathrm{b}\overline{\mathrm{b}}}}{\mathrm{d}y} \right|_{|y|<0.5} = 34.5 \pm 2.4 \mathrm{(stat)}$$

$$^{+4.7}_{-2.9} \mathrm{(tot.syst)} \ \mu\mathrm{b}$$

Results — Beauty-quark production cross section

 $\begin{array}{l} \mbox{PHENIX: PRL 103 082002 (2009)} \\ \mbox{UA1: PLB 256 121-128 (1991)} \\ \mbox{CDF: Phys. Rev. D 75 012010 (2007)} \\ \mbox{b} \rightarrow J/\Psi: JHEP 11 065 (2012) \\ \mbox{b} \rightarrow e: PLB 721 13-23 (2013) \\ \mbox{Dielectron, 5 TeV: PRC 102 055204 (2020)} \\ \mbox{Dielectron, 7 TeV: JHEP 09 064 (2018) \\ \mbox{Dielectron, 13 TeV: PLB 788 505-518 (2019) } \\ \mbox{FONLL: M. Cacciari et al. JHEP 1210 137 (2012) } \\ \mbox{NNLO: S. Catani et al. JHEP 03 029 (2021) } \end{array}$

 Beauty-quark production described by FONLL and NNLO calculations over a wide interval of center-of-mass energies

20/05/2021

Correction for beauty-quark FF ratio

$$\left(\frac{f_{s}}{f_{u}+f_{d}}\right)_{\text{beauty}} = \left[\frac{N(\mathbf{D}_{s}^{+} \leftarrow \mathbf{B}_{s}^{0})}{N(\mathbf{D}_{s}^{+} \leftarrow \mathbf{H}_{b})} \cdot \frac{N(\mathbf{D}^{0}, \mathbf{D}^{+} \leftarrow \mathbf{H}_{b})}{N(\mathbf{D}^{0}, \mathbf{D}^{+} \leftarrow \mathbf{B}^{0,+})}\right]^{\text{FONLL+PYTHIA 8}} \cdot \left(\frac{\mathbf{D}_{s}^{+}}{\mathbf{D}^{0} + \mathbf{D}^{+}}\right)_{\text{non-prompt}}$$

Extrapolation factor for beauty-quark cross section

$$\alpha_{\text{extr}}^{b\overline{b}} = \frac{d\sigma_{b\overline{b}}/dy|_{|y|<0.5}^{\text{FONLL}}}{\sigma_{b\rightarrow D}^{\text{FONLL+PYTHIA 8}}(p_{\text{T}}^{\text{min}} < p_{\text{T}} < p_{\text{T}}^{\text{max}}, |y| < 0.5)}$$

20/05/2021

Selections improved with machine learning

- Example from Pb–Pb collisions
- ► Using ML selections it is possible to extract the signal in a region (2 < p_T < 3 GeV/c) where the linear selections do not give a clear D⁺_s peak

20/05/2021

Non-strange D-meson R_{AA}

 Hierarchy in the D-meson R_{AA} suppression: increasing from peripheral to semi-central and central Pb–Pb collisions

 Integrated R_{AA} around (below) unity in p-Pb (Pb-Pb) → observed suppression due to final state effects

20/05/2021

Prompt D_s^+ -meson abundance in Pb–Pb collisions

PHSD: T. Song et al. PRC 92 014910 (2015) TAMU: M. He et al. PLB 735 445-450 (2014) Catania: S. Plumari et al. EPJC 78 348 (2018)

- ► Indication of higher D⁺_s/D⁰ ratio in Pb-Pb compared to pp at p_T < 8 GeV/c</p>
- D_s⁺ enhancement qualitatively described by transport models including charm-quark recombination in a strangeness-rich medium
- Quantitative differences between TAMU, PHSD and Catania
 - more precise Run 3 data will permit to discriminate

20/05/2021

D-meson elliptic flow in Pb-Pb collisions

• D-meson v_2 measured at mid-rapidity (|y| < 0.8) with the scalar-product (SP) method

$$v_{2}\{SP\} = \frac{\langle \boldsymbol{u}_{2} \cdot \boldsymbol{Q}_{2}^{A} / M^{A} \rangle}{\sqrt{\frac{\langle \boldsymbol{Q}_{2}^{A} / M^{A} \cdot \boldsymbol{Q}_{2}^{B} / M^{B} \rangle \langle \boldsymbol{Q}_{2}^{A} / M^{A} \cdot \boldsymbol{Q}_{2}^{C} / M^{C} \rangle}}{\langle \boldsymbol{Q}_{2}^{B} / M^{B} \cdot \boldsymbol{Q}_{2}^{C} / M^{C} \rangle}}$$
where $\boldsymbol{Q}_{2} = \sum_{j=0}^{M} w_{j} e^{i2\varphi_{j}}$ and $\boldsymbol{u}_{2,D} = e^{i2\varphi_{D}}$

Sub-events:

- A: VOC (-3.7 < \eta < -1.7)

- B: VOA (2.8 < \eta < 5.1)

- C: TPC ($|\eta| < 0.8$))

• v_{2} of the signal extracted from a v_{2} vs mass fit

$$v_2(M) = \frac{S}{S+B}v_2^{sig} + \frac{B}{S+B}v_2^{bkg}$$

F. Catalano (PoliTo and INFN)

20/05/2021

Prospects for Run 3 and beyond

- Major upgrade of ALICE detectors and read-out electronics ongoing
 - increase collected Pb-Pb luminosity by more than one order of magnitude
- ► Inner Tracking System (ITS) upgrades crucial for heavy-flavour measurements
- ▶ Run 3 → completely new detector (ITS2)

Run 4 → three truly cylindrical layers based on ultra-thin curved silicon-pixel sensors (ITS3)

20/05/2021