Global and local polarization of Λ and Λ hyperons in Pb-Pb collisions at ALICE **Debojit Sarkar** for the ALICE Collaboration

SQM 2021 May 20, 2021

WAYNE STATE UNIVERSITY

Global hyperon polarization (P_H)

- Strong magnetic field due to charged spectators \rightarrow splitting in particle/antiparticle polarization.
- Mostly sensitive to the initial stages of the collisions.

• Vorticity along the system orbital angular momentum due to initial shear in longitudinal flow velocity.

• "Global polarization"→ particle/antiparticle polarization along system's orbital angular momentum.

P_H measurement in heavy-ion collisions

impact parameter

ALICE, Phys. Rev. C 101, 044611 (2020)

SQM 2021 May 20, 2021

• Λ ($\overline{\Lambda}$) hyperons \rightarrow Parity violating weak decay \rightarrow used for polarization measurement.

- Ψ_{SP} = Spectator plane angle (azimuthal angle of \vec{b})
- $\varphi_{\rm p}^*$ = azimuthal angle of daughter proton in $\Lambda(\bar{\Lambda})$ rest frame
 - $R_{\rm SP}^{\rm I}$ = Resolution of $\Psi_{\rm SP}$
- $\alpha_{\rm H}$ = Hyperon decay parameter

Polarization along the beam direction (P_z)

- "Local polarization": exhibits a quadrupole pattern, i.e. $sin(2\varphi 2\Psi_2)$ dependence.
- Sensitive to the later stages of the evolution of the system.

SQM 2021 May 20, 2021

P_z in heavy-ion collisions (story so far...)

STAR, Physical Review Letters 123, 132301 (2019) X. Xia, H. Li, Z. Tang, Q. Wang, arXiv:1803.00867 (AMPT)

- freeze-out.
- sign puzzle").
- STAR!

SQM 2021 May 20, 2021

Becattini, Karpenko, PRL.120.012302 (2018) (Hydro)

S. Voloshin, EPJ Web Conf.171, 07002 (2018)

• Hydro models and AMPT estimate P_z from thermal vorticity at the kinetic

• Both generate negative $P_{z,s2}$ (opposite to experimental observation \rightarrow "spin

• Blast-Wave model (kinematic vorticity) describes the P_{z,s2} measured in

P_z in heavy-ion collisions (Recent developments)

Ref. 1: F. Becattini et al.; arXiv:2103.14621 [nucl-th]

- Refs.1,2: Polarization estimated from thermal shear + thermal vorticity.
- Ref.1: Explains $P_z(\varphi \Psi_2)$ in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV with $T_{dec} = 150-160$ MeV. Assumption: Isothermal local equilibrium.
- in STAR.

Ref. 2: B. Fu et al.; arXiv:2103.10403 [hep-ph]

• Ref.2: $\Lambda(\bar{\Lambda})$ inherits the spin polarization of the strange quark \rightarrow qualitatively explains $P_z(\varphi - \Psi_2)$ measured

6

Measuring hyperon polarization in ALICE

- Dataset Pb-Pb (P_H measurement: $\sqrt{s_{NN}}$ = 2.76 TeV (~ 49 M events), 5.02 TeV (~ 75 M events)), (P_z measurement: $\sqrt{s_{NN}} = 5.02$ TeV, ~ 270 M events).

- Neutron Zero Degree Calorimeter (ZNA and ZNC) spectator plane (Ψ_{SP}) reconstruction. SQM 2021 May 20, 2021

• V0 scintillators (V0A, V0C) - centrality estimation, second harmonic flow plane (Ψ_2) reconstruction.

• Time Projection Chamber (TPC) - $\Lambda(\bar{\Lambda})$ reconstruction ($p_T > 0.5$ GeV/c, lyl < 0.5), Ψ_2 reconstruction.

Debojit Sarkar

SQM 2021 May 20, 2021

Measuring global polarization (P_H) in ALICE using invariant mass method

Global polarization (P_H) in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV in ALICE

• P_H consistent with zero within experimental uncertainties.

• No difference between Λ and $\overline{\Lambda}$ polarization observed.

 $\bullet P_H$ decreases with collision energy as expected due to higher baryon transparency at higher collision energies.

Measuring local polarization (P_z) in ALICE using invariant mass method

- Ψ_2 reconstructed using TPC, V0A, and V0C detectors.
- $P_{z,s2}$ measured with Ψ_2 in TPC and V0 detectors are combined for final result.
- $P_{z,s2}$ for Λ and $\overline{\Lambda}$ hyperons are consistent \rightarrow combined to calculate the average $P_{z,s2}$. SQM 2021 May 20, 2021

Debojit Sarkar

ALI-PREL-367059

- At $p_T < 2.0$ GeV/c, $P_{z,s2}$ at the LHC is smaller than the STAR results in semi-central collisions.
- Blast-Wave model explains $P_{z,s2}$ in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV!
- constraints to the models.

SQM 2021 May 20, 2021

Local polarization (P_z) in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in ALICE

Blast-Wave calculations: Takafumi Niida and Sergei Voloshin (private communication)

• P_{z,s2} at the LHC is similar in magnitude to top RHIC energy (tends to be smaller in semi-central collisions).

• Comparison with the newly introduced (shear + vorticity) based polarization estimation would provide valuable

- within experimental uncertainties (~ 10^{-3}).
- thermal vorticity based model predictions.
- provide valuable constraints to the models.
- further investigate the vorticity dynamics and particle polarization in heavy-ion collisions.

• Global hyperon polarization (P_H) in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV is consistent with zero

• Polarization along the beam direction ($\langle P_z \sin(2\varphi - 2\Psi_2) \rangle$) is positive at RHIC and the LHC \rightarrow opposite to

Comparison between the P_{z,s2} measured by ALICE and (shear + vorticity) based model calculations would

• Upcoming Run 3 at the LHC will allow more differential and precision measurements of P_H and P_z to

Thank you

SQM 2021 May 20, 2021

Measurement of P_H in ALICE

- P is the momentum of the projectile (moving toward positive rapidity: known). Need to know the direction of impact parameter vector (\vec{b}).
- Direction of b can be estimated from the deflection of the projectile spectators.
- Spectator plane angle (Ψ_{SP}) characterizes the deflection direction of the spectator nucleons. • P_H is measured with respect to Ψ_{SP} (azimuthal angle of b).

- Deflection of the spectators estimates the direction of b and in turn \vec{L} .
- On average: spectators deflect outwards.

S. Voloshin, T. Niida; Phys. Rev. C 94, 021901(R) (2016)

ALICE, Phys. Rev. C 101, 044611 (2020)

• To measure P_H , the direction of orbital angular momentum ($\vec{L} = \vec{b} \times \vec{P}$) need to be known.

SQM 2021 May 20, 2021

P_z in heavy-ion collisions (Story so far...)

STAR, Physical Review Letters 123, 132301 (2019) F. Becattini and I. Karpenko, PRL.120.012302 (2018) (Hydro) X. Xia, H. Li, Z. Tang, Q. Wang, arXiv:1803.00867 (AMPT)

The Blast-Wave (BW) model explains the P_z data in STAR. The sign of the phase modulation of P_z depends on the interplay between spatial and flow anisotropy at freeze-out in the BW model:

(S. Voloshin, arXiv:1710.08934)

$$(t_{,max}/R]\sin(2\phi_H)(a_2-b_2)$$

 $P_z pprox \omega_z/(2T)$ a2: spatial anisotropy, b2: flow anisotropy

P_z in heavy-ion collisions (Recent developments)

- vorticity.
- $T_{dec} = 150-160$ MeV. The sign flips for $T_{dec} < 135$ MeV.

Ref.2: $\Lambda(\bar{\Lambda})$ inherits and memorizes the spin polarization of the strange quark—effect of shear prevails over thermal vorticity and qualitatively explain $P_{\tau}(\varphi - \Psi_2)$ in Au–Au collisions at 200 GeV.

> SQM 2021 May 20, 2021

Ref.1: Assumption : Isothermal Local equilibrium (T_{dec}) \rightarrow gets rid of the temperature gradient term in the

Ref.1: (Shear + Vorticity) explain the experimentally measured $P_z(\varphi - \Psi_2)$ in Au–Au collisions at 200 GeV with

Thermal shear: $\xi_{\mu\nu} = \frac{1}{2} \left(\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} \right).$ Thermal vorticity: $arpi_{\mu
u} = -rac{1}{2} \left(\partial_{\mu}eta_{
u} - \partial_{
u}eta_{\mu}
ight).$

Debojit Sarkar

16 Page

