

System size and energy dependence of resonance production in ALICE

Vikash Sumberia (for the ALICE Collaboration) University of Jammu, J&K, INDIA

Outline:

- Motivation
- ALICE detector and analysis details
- Results
 - ★ p_{T} spectra
 - ★ Mean transverse momentum and yield (dN/dy)
 - \star Particle ratios
 - ★ Nuclear modification factors
- Summary

Motivation

Resonances are short lived particles (few fm/c) which decay by strong interaction

Hadronic phase: time span between chemical and kinetic freeze-out

Resonance	Lifetime (fm/ <i>c</i>)	Decay channel	Branching ratio (%)
ρ(770) ⁰	1.3	π⁺π⁻	100
K [*] (892) [±]	3.6	$\pi^{\pm}K_{s}^{0}$	33
K [*] (892) ⁰	4.16	π⁻K⁺	66
Λ(1520)	12.56	pK⁻	22.5
ф(1020)	46.2	K⁻K⁺	49.2

- Modification of yields (re-scattering vs re-generation)
- Hint for finite lifetime of hadronic phase
- Hadrochemistry of particle production
- Study of in medium energy loss

 $\Lambda(1520)$ resonance in p-Pb at 8.16 TeV is new and other resonances will be used as examples

The 19th International Conference on Strangeness in Quark Matter

May 17-21, 2021

Forward detector (V0): V0A (2.8< η <5.1) and V0C (-3.7< η <-1.7)

Trigger and centrality

Time Projection Chamber (TPC): ($|\eta| < 0.9$)

- Primary vertex and tracking
- Measure momentum
- PID through dE/dx

Time-Of-Flight (TOF): ($|\eta| < 0.9$) **PID through time of flight**

May 17-21, 2021

The 19th International Conference on Strangeness in Quark Matter

Analysis details: resonance reconstruction

- 1. Invariant mass method: Resonances reconstructed by their decay products, adding their 4-momenta
- 2. Combinatorial background : Removed using mixed event or like-charge technique
- 3. Residual background : Correlated pairs or misidentified decay products removed by fitting with polynomial function
- 4. Signal : Fit with Breit-Wigner or Voigtian function, yield calculated by integrating the fitting function

$p_{\rm T}$ spectra in heavy-ion collisions

• p_{τ} spectra get harder from peripheral to central collisions

Similar spectral shape also observed for K^{*0} and ϕ in Xe-Xe collisions and same behaviour is observed for other resonances

The 19th International Conference on Strangeness in Quark Matter

ALICE

$p_{\rm T}$ spectra in p-Pb collisions

$p_{\rm T}$ spectra in pp collisions

PLB 807 (2020) 135501

- The spectral shape changes with multiplicity
- The spectra get harder with multiplicity

Energy dependence of resonance production

- Resonance yield increases with collision energy
- The increase is more for high p_{T}

Similar behaviour also observed in other collision systems

Integrated yield (dN/dy)

Resonance production is independent of colliding system or energy for collisions with similar multiplicity

-> Event multiplicity drives resonance yield

Average *p*_T

The 19th International Conference on Strangeness in Quark Matter

May 17-21, 2021

Particle ratios

Lifetime (fm/c): ρ^0 (1.3) < K^{*±} (3.6) < K^{*0} (4.17) < $\Sigma^{*\pm}$ (5.0-5.5) < A* (12.6) < Ξ^{*0} (21.7) < ϕ (46.2)

Pb-Pb collisions:

--Suppression of yields of resonances (ρ^0 , K^{*0} , $\Sigma^{*\pm}$, $\Lambda(1520)$, Ξ^{*0}) with increasing multiplicity \rightarrow Re-scattering effect dominates over re-generation

--No suppression observed in ϕ resonance (could be a hint of finite or limited lifetime of hadronic phase)

Small systems (pp, p-Pb):

--Small decreasing trend for ρ⁰ and K^{*0}
--No significant suppression of yield for other resonances
(could be a hint of the dependence of lifetime of hadronic phase on the collision system)

The 19th International Conference on Strangeness in Quark Matter

Nuclear modification factors (R_{AA} or R_{pA})

The 19th International Conference on Strangeness in Quark Matter

ALICE

- Hardening of p_{T} spectra with multiplicity
- Resonance yield increases with energy
- Multiplicity drives resonance yield
- $< p_{T} >$ mass ordering in central Pb-Pb collisions
- Limited lifetime of the hadronic phase
- Presence of in medium effects in Pb-Pb collisions
- At high p_{T} , no flavour dependence

Thanks for kind attention..