

Characterizing the collective behavior in small and large systems with ATLAS

Pengqi (Bill) Yin, Columbia University, For the ATLAS Collaboration

May 21, 2021

New results since SQM2019

- Flow in large systems
 - HF muon+hadron correlations in Pb+Pb,
 - Charged particle flow in Xe+Xe,
 - Flow decorrelation in Xe+Xe and Pb+Pb,
 - $v_n [p_T]$ correlation in Xe+Xe and Pb+Pb,
- Flow in small systems
 - High- p_T correlations in p+Pb,
 - HF muon+hadron correlations in pp,
 - Sensitivity of flow to jets in pp,
 - Z-tagged ridge in pp,
 - Photo-nuclear 2PC in Pb+Pb,

Phys. Lett. B 807 (2020) 135595
Phys. Rev. C 101 (2020) 024906
Phys. Rev. Lett. 126 (2021) 12230
ATLAS-CONF-2021-001

New results since SQM2019

- Flow in large systems
 - HF muon+hadron correlations in Pb+Pb,
 - Charged particle flow in Xe+Xe,
 - Flow decorrelation in Xe+Xe and Pb+Pb,

• V_n - [p⁻¹ correlation in Var Va and Dh. Dh ATLAS CONE 2021 001

Phys. Lett. B 807 (2020) 135595

Phys. Rev. C 101 (2020) 024906

Phys. Rev. Lett. 126 (2021) 12230

- Flow in High High-
 - HF muon+hadron correlations in pp,
 - Sensitivity of flow to jets in pp,
 - Z-tagged ridge in pp,
 - Photo-nuclear 2PC in Pb+Pb,

Phys. Rev. Lett. 124 (2020) 082301 ATLAS-CONF-2020-018 Eur. Phys. J. C 80 (2020) 64 CERN-EP-2020-246

Flow phenomenon

> One of the main signature of QGP creation.

Flow and longitudinal flow decorrelation

> The asymmetry from forward and backward going nucleons gives longitudinal flow fluctuation.

> Help understanding the hydrodynamic expansion, the initial state geometry and fluctuations.

System-size Dependence

Phys. Rev. C 97, 034904 (2018)

Viscous hydrodynamics

\mathbf{v}_2 v₂ ratio (Xe+Xe/Pb+Pb) 2PC ATLAS **ATLAS** 0.2 • Xe+Xe $\sqrt{s_{NN}}$ = 5.44 TeV, 3 µb⁻¹ 1.4 • Pb+Pb $\sqrt{s_{\rm NN}}$ = 5.02 TeV, 22 µb⁻¹ $0.15 \stackrel{\text{L}}{=} 2 < l\Delta \eta l < 5 \quad 0.5 < p_{\tau}^{a,b} (\text{GeV}) < 5$ o Data Þ 1.2 □ Theory, Phys.Rev.C 97 (2018) 034904 0.1 0.05 Ċ. 20 40 60 20 40 60 0 n Centrality [%] Centrality [%] ۲₃ v₃ ratio (Xe+Xe/Pb+Pb) ATLAS ATLAS 0.06 1.2 P 0.04 0 0 0 0 0.02 白 白 0.8 20 20 40 60 40 60 0 0 Centrality [%] Centrality [%]

Phys. Rev. C 101 (2020) 024906

Most central events are dominated by fluctuation effects.

Phys. Rev. C 101 (2020) 024906

Most central events are dominated by fluctuation effects.

Larger viscous effects when going to more peripheral events.

Phys. Rev. C 101 (2020) 024906

Most central events are dominated by fluctuation effects.

Larger viscous effects when going to more peripheral events.

With increasing harmonic, viscous effects lower the v_n in Xe+Xe.

Phys. Rev. C 101 (2020) 024906

Most central events are dominated by fluctuation effects.

Larger viscous effects when going to more peripheral events.

With increasing harmonic, viscous effects lower the v_n in Xe+Xe.

Interplay of fluctuations in the collision geometry and viscous effects.

Phys. Rev. Lett. 126 (2021) 12230

Flow vector: $\mathbf{q}_n \equiv \Sigma_j w_j e^{in\phi_j}/(\Sigma_j w_j)$

Decorrelation between
$$-\eta$$
 and η : $r_{n|n}(\eta) = \frac{\langle q_n(-\eta)q_n^*(\eta_{ref}) \rangle}{\langle q_n(\eta)q_n^*(\eta_{ref}) \rangle} \le 1$

Phys. Rev. Lett. 126 (2021) 12230

- > Increase linearly with η .
- \succ r_{2|2} strong centrality dependence.
- \succ r_{3|3} r_{4|4} weak centrality dependence.
- Increase significantly from n=2 to n=3.
- Smaller change from n=3 to n=4

Phys. Rev. Lett. 126 (2021) 12230

- > Increase linearly with η .
- \succ r_{2|2} strong centrality dependence.
- \succ r_{3|3} r_{4|4} weak centrality dependence.
- Increase significantly from n=2 to n=3.
- > Smaller change from n=3 to n=4
- Quantify by slope:

$$r_{n|n}(\eta) = 1 - 2F_n\eta$$

Decorrelation strength

F2 strong centrality dependence.

Reverse ordering for n=2 and 3:

 $F_2^{XeXe} > F_2^{PbPb}$

 $F_3^{XeXe} < F_3^{PbPb}$

Phys. Rev. Lett. 126 (2021) 12230

F2 strong centrality dependence. Reverse ordering for n=2 and 3: $F_2^{XeXe} > F_2^{PbPb}$

 $F_3^{XeXe} < F_3^{PbPb}$

Anti-correlation between v_n and F_n – opposite centrality dependence

Hydro explains v_n ratio very well but fails to explain F_n ratio.

Provide new insights to separate effects of the longitudinal structure of the initial state from other early time and late time effects.

Phys. Rev. Lett. 126 (2021) 12230

Ridge in small system

Collective flow

Arise from collective behavior? Artifact of semi-hard processes?

Particle rejections around jets

- Tracks separated from jets are used for the two particle correlation study.
- Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the Δφ in two particle correlations (2PC).
- → Tracks within $\Delta \eta = \pm 1$ from the jet axis of any jets with $p_{\rm T}^{\rm jet} > 10$ GeV are dropped.

Rejection around jet	Event with jets	Event with no jets
\checkmark	\checkmark	×
N/A	×	\checkmark
\checkmark	\checkmark	\checkmark
×	\checkmark	\checkmark
	Rejection around jet √ N/A √ ►	Rejection around jetEvent with jets√√N/A×√√√√

(Phys. Rev. C 96 (2017) 024908) < Case **Template Fit** Preliminary 0.15 *pp* **√***s*=13 TeV, 64 nb⁻¹ Ratio to the Inclusive 0.5<p__^a,b<5 GeV 1.4 $0 \le N_{ch}^{periph} < 20$ 2<l∆nl<5 Inclusive O AllEvents □ NoJet △ WithJet 0.1 1.2 0.05 0.8L 20 20 120 40 60 80 100 140 40 60 80 100 120 140 0 N^{rec,corr}_{ch} N^{rec,corr}_{ch}

- > The v_2 values are observed to vary weakly with multiplicity.
- > The v_2 in *AllEvents* and *NoJet* sets are <u>slightly smaller</u> than the *Inclusive* set.
 - > Softening of the $p_{\rm T}$ -spectra during rejection
- > The v_2 in the *WithJet* set are consistent with the *Inclusive* set within uncertainties.

- > The multiplicity dependence of higher order harmonics v_3 and v_4 .
- The values for AllEvents and NoJet are similar to the Inclusive. The difference is about 10%, but with significant uncertainties.
- > The *WithJet* case is not shown here due to large statistical uncertainties.

- > The v_2 values are observed to be similar up to 3 GeV.
- > The *WithJet* is also consistent but with much larger statistical uncertainties.

- > The v_2 values are observed to be similar up to 3 GeV.
- > The *WithJet* is also consistent but with much larger statistical uncertainties.
- > At higher $p_{\rm T}$, the v_2 in *AllEvents* and *NoJet* sets are <u>larger</u> than the *Inclusive*.
 - > Inclusive has some bias at higher $p_{\rm T}$ which is reduced when rejecting tracks near jets.

- > The v_3 and v_4 values are observed to be similar up to 3 GeV.
- > The low- $p_{\rm T} v_n$ are not affected by the presence/absence of jets.

- > The v_3 and v_4 values are observed to be similar up to 3 GeV.
- > The low- $p_T v_n$ are not affected by the presence/absence of jets.
- > The v_3 at higher p_T show large differences. *Inclusive* values are much higher.
 - > Indicates high- $p_T v_3$ in *Inclusive* are biased from jet-bias effects.

<u>High-p_T correlation in p+Pb</u>

JHEP 04 (2017) 039

No suppression is observed at high p_T .

Phys. Rev. C 90, 044906 (2014)

Are low p_T and high p_T particles azimuthally correlated in p+Pb?

Eur. Phys. J. C 80 (2020) 73

Three classes:

- Minimum-bias
- Events triggered by 75 GeV jets.
- Events triggered by 100 GeV jets.

Only associated particle is $|\Delta \eta| > 1$ relative to all jets $p_T > 15$ GeV.

- Different from pp analysis.
- Jet contribution to reference particles but not to the associated particles in 2PC
- Reduce non-flow bias.

Eur. Phys. J. C 80 (2020) 73

Low p_T bulk flow are consistent.

Eur. Phys. J. C 80 (2020) 73

Low p_T bulk flow are consistent.

Significant v_2 observed at high p_T . Consistent between minimum-bias and jet triggered events.

Eur. Phys. J. C 80 (2020) 73

Low p_T bulk flow are consistent.

Significant v_2 observed at high p_T . Consistent between minimum-bias and jet triggered events.

In transition region, jet-triggered events are systematically smaller than the minimum-bias v_2 .

p+Pb (scaled by 1.5) quantitatively agree with Pb+Pb

- Slight difference at peak
- A slow decline of v_2 with increasing p_T in Pb+Pb

A common physics interpretation?

Additional contributions to v_2 at high p_T in Pb+Pb collisions?

Photo-nuclear interactions

Direct yA collisions

Multiple neutrons

Resolved yA collisions

Nucleus breaks up Multiple neutrons

Flow in photo-nuclear collisions

2 0.14 ATLAS Template Fit Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV $2.0 < |\Delta \eta| < 5.0$ 0.12 - 1.0 µb⁻¹ - 1.7 nb⁻¹ $0.5 < p_{\tau}^{a,b} < 5.0 \text{ GeV}$ $\Sigma_{n}\Delta\eta > 2.5, 0$ nXn $0.4 < p^{a,b} < 2.0 \text{ GeV}$ pp ΔV2 0.1 $p + Pb \neq V_2$ v₂ Photonuclear V2 v₃ Photonuclear 0.08 0 Ň 0.06 0.04 0.02 □ 20 30 70 80 40 50 60 $N_{\rm ch}^{\rm rec}$

Observe significant v_2 in photo-nuclear collisions.

 v_2 is flat within error

 v_2 is systematically smaller than pp and pPb

Consistent v_3 between γA and pp given large uncertainties on both

CERN-EP-2020-246

<u>Summary</u>

- > Flow and longitudinal flow fluctuation in large collision systems
 - > Fluctuations in initial geometry increase Xe+Xe v_n and are dominant in central collisions.
 - > Viscous effects decrease Xe+Xe v_n and dominant in mid-central & peripheral collisions.
 - > Mean v_n and longitudinal v_n decorrelation follow opposite trends.
- > Flow measurements in small systems
 - pp: Long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.
 - > pp: Low- $p_T v_n$ are not affected by presence/absence of jets.
 - \triangleright pPb: Low $p_{\rm T}$ particle azimuthal anisotropy explained via hydrodynamics and geometry.
 - > pPb: v_n from high p_T particles cannot be explained in the theoretical context of jet quenching.
- Flow in photon-induced processes
 - Significant azimuthal anisotropies observed in photo-nuclear collisions.
 - > $p_{\rm T}$ -integrated v_2 is systematically smaller than pp and p+Pb.

New results since SQM2019

- Flow in large systems
 - HF muon+hadron correlations in Pb+Pb,
 - Charged particle flow in Xe+Xe,
 - Flow decorrelation in Xe+Xe and Pb+Pb,
 - $v_n [p_T]$ correlation in Xe+Xe and Pb+Pb,
- Flow in small systems
 - High- p_T correlations in p+Pb,
 - HF muon+hadron correlations in pp,
 - Sensitivity of flow to jets in pp,
 - Z-tagged ridge in pp,
 - Photo-nuclear 2PC in Pb+Pb,

Phys. Lett. B 807 (2020) 135595
Phys. Rev. C 101 (2020) 024906
Phys. Rev. Lett. 126 (2021) 12230
ATLAS-CONF-2021-001

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Template-fit method

□ Plots show 1D 2 particle correlations (2PCs) from *pp* collision.

The strength of the long-range correlation can be quantified by extracting Fourier moments of the 2PC distribution which are denoted v_{n.n} and defined by:

 $C(\Delta\phi) = C_0 \left(1 + 2\Sigma_{n=1}^{\infty} v_{n,n}(p_{\rm T}^{\rm a}, p_{\rm T}^{\rm b}) \cos(n\Delta\phi) \right)$

□ The $v_{n,n}$ are directly related to the single-particle anisotropies v_n . In the case where the $v_{n,n}$ entirely result from the single-particle anisotropy, the $v_{n,n}$ are products of the single-particle v_n :

 $v_{n,n}(p_{\mathrm{T}}^{\mathrm{a}}, p_{\mathrm{T}}^{\mathrm{b}}) = v_n(p_{\mathrm{T}}^{\mathrm{a}})v_n(p_{\mathrm{T}}^{\mathrm{b}})$

However, in pp collisions a significant contribution to the 2PC arises from back-to-back dijets. A template-fit method is used to extract long-range correlation.

Fit the correlation with template of two components:

- ❑ C^{periph}: Correlation in *pp* peripheral events : Dijet bkgd
- **C**^{ridge} : Pedestal* $(1 + 2\sum v_{n,n} \cos(n\Delta\phi))$: True signal

Phys. Rev. C 101 (2020) 024906

> At same N_{part} , Xe+Xe v_2 is smaller than Pb+Pb.

- Xe+Xe geometry is less elliptic.
- \succ v₃ is similar except for most central events.
 - Largely driven by fluctuations.

Increase "linearly" with η .

Some hints on non-linearity in 0-5% central collisions

Increase significantly from n=2 to n=3

Relatively smaller change from n=3 to n=4

Quantify by slope:

$$r_{n|n}(\eta) = 1 - 2\mathbf{F_n}\eta$$

 $F_2^{XeXe} > F_2^{PbPb}$

 $F_3^{XeXe} < F_3^{PbPb}$

Phys. Rev. Lett. 126 (2021) 12230

Phys. Rev. Lett. 126 (2021) 12230

Flow Decorrelation

Phys. Rev. Lett. 126 (2021) 12230

Flow Decorrelation

Phys. Rev. Lett. 126 (2021) 12230

Eur. Phys. J. C 80 (2020) 73

Eur. Phys. J. C 80 (2020) 73

Eur. Phys. J. C 80 (2020) 73

Flow in photo-nuclear collisions

CERN-EP-2020-246

- Observe Significant v₂ in photo-nuclear collisions
 - v₂ is flat within error and systematically smaller than pp and pPb
 - pT dependent results consistent within uncertainties