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CBM physics goals and experimental challenges

● Tracking: Micro-Vertex Detector (MVD), 
Silicon Tracking System (STS)

● Particle identification: Muon Chamber (MuCh), 
Ring Imaging Cherenkov (RICH), 
Transition Radiation Detector (TRD), 
Time of Flight (TOF)

● Collision geometry: Projectile Spectator Detector (PSD) 

Main CBM physics cases:
● QCD matter equation-of-state at large baryon densities
● The production of strange quarks is sensitive to the properties of created 

matter in high energy nuclear collisions
○  (Multi)-Strange particles

● Extend nuclei chart with hypernuclei measurements

TOF

PSD

MVD+STS

TRDRICH

MuCh

To study rare probes CBM will operate at an unprecedented interaction rate, up to 10 MHz!

https://www.researchgate.net/publication/323880118_From_Strangeness_Enhancement_to_Quark-Gluon_Plasma_Discovery


CBM experiment overview:
Norbert Herrmann on 22 May 2021, 11:00

CBM 
cave

Full video

https://www.youtube.com/watch?v=cjmUyp0My38


(Multi)-Strange reconstruction via weak decays
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Λ candidates reconstruction:

● Combine all proton and pion tracks 

● Signal from a lambda decay 

● Combinatorial background

  Variables :
●  χ2

prim - squared distance between the daughter track and
the primary vertex divided by its Covariance Matrix (CV)

● DCA - distance of closest approach between proton & pion tracks

● χ2
geo - squared distance between daughter tracks divided by CV

● L/ΔL - distance between primary and secondary vertex divided by CV

● cos αpΛ, cos αΛπ, χ2
topo (future investigation)

Selection criteria are optimized multi-dimensionally, non-linearly and in an automatized way with Machine Learning algorithms

● Λ hyperons are the most abundant strange baryons produced at FAIR energies

● Collisions generated by URQMD and DCM-QGSM-SMM with Au+Au collisions at pbeam = 12A GeV/c (⇃sNN = 4.93), mbias, 100k 

● Using GEANT4 simulation, CA tracking within CbmRoot framework

Λ0 ￫ p+π-
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● Boosting combines weak learners (error rate <50%) to make a 

strong learner (error rate <25%)

● Decision trees (weak learners) are combined together to make a 

GB algorithm

● In each step a new tree is used to improve the previous prediction

● XGB is an extension of GB with:

○ better control over overfitting

○ parallel processing

○ additional features

Machine Learning (ML)
● ML algorithms can perform a specific task by analyzing examples and can learn from data

● Variables associated with decay tracks are analyzed by the algorithm to classify Λ candidates

● Various ML algorithms  tested: (SVM, Regression, MLP, Decision Trees, Gradient Boosting 

(GB), Extreme GB (XGB))

○ XGB works better in terms of performance

Gradient Boosting (GB)

empirical evidence shows that taking 
lots of small steps in the right direction 
results in better predictions with the 
Testing Data

Jerome Friedman:

Following the implementation of the ALICE Collaboration ML package

CBM Au+Au collisions @ 12A GeV/c

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://github.com/dmlc/xgboost/
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://github.com/hipe4ml/hipe4ml


Test and train 
sets

XGB implementation for Λ

Pure MC signal 
(DCM-QGSM-SMM)

Pure background
(UrQMD)

Cleaning

Test setTrain set

Λ candidates

● UrQMD sample is taken as experimental data (pure background)

● DCM-QGSM-SMM sample as simulated data (pure signal)

● Λ candidates are cleaned by removing nonphysical values

● Λ candidates are divided into train and test samples
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Background is selected ± 5σ away from the Λ peak mean

XGB Model



XGB Model evaluation
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Model trained on the train sample is applied to the test sample

True positive rate = tpr; Signal = S ; Background = B

AMS= √2 [(tpr + fpr) log(1 + tpr/fpr) - tpr]

Threshold on the ROC (Receiver Operating Characteristic) curve 
which maximizes Approximate Median Significance (AMS)

on the test sample is our Best Threshold 

Optimize Λ candidates selection for significance

https://higgsml.lal.in2p3.fr/files/2014/04/documentation_v1.8.pdf
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● Optimal XGB probability (0.96) is applied

XGB performance for Λ candidates selection 

● Preserve smooth background shape after XGB selection



Yield Extraction: fitting procedure
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Lorentzian function is used for signal and 2nd order polynomial for background:

Fits for all (pT,y) bins available here

Divide (pT,y) phase space into 15x15 bins

1. Exclude signal region (m<1.108 & m>1.13) and fit background with pol2(m)

2. Use background fit parameters as initial values for next iteration, where

signal (Lorentzian) fit function has fixed m0 = 1.1156GeV/c2 and width Γ=0.0014 GeV 

3. Use fit parameters as initial values for unconstrained fit to the whole inv. mass range

Step 1 Step 2 Step 3

https://drive.google.com/drive/folders/1XwRNqexBVlvBravCq4jxBlEMym2Y3SxD?usp=sharing
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Results: acceptance and efficiency of Λ reconstruction 

XGB algorithm shows high efficiency ~ 80% Total reconstruction (acc x efficiency) ~ 35%

● Reconstructed = reconstructed + selected Λ 
● Reconstructable = both daughters are reconstructed

XGB algorithm efficiency Acceptance and efficiency



Results: efficiency and acceptance corrected Λ yield

(Corrected Λ yield) / true Λ 

XGB selection, yield extraction procedure, and efficiency correction allow to recover true Λ yield
11

Corrected Λ yield



Results: Efficiency and acceptance corrected yield (pT/y projections)

12Reconstructed input signal without introducing any bias due to XGB model

CBM Performance
UrQMD Au+Au@ 12A GeV/c
Only statistical uncertainties

True Λ yield
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Summary and outlook

● Λ baryon reconstruction in CBM@FAIR with Machine Learning techniques
○ Optimization of selection criteria performed via XGB
○ High signal purity and efficiency achieved, preserved smooth background shape

● Λ yield extraction and efficiency
○ Yield, extracted after XGB selection and (acceptance x efficiency) corrected

is compatible with initial model spectra

Outlook

● Include more variables to improve XGB selection and signal to background ratio
● Study different Λ samples to minimize overfitting and investigate stability

○ multi-differential (pT, y, centrality) XGB selection, test and training

● Evaluate systematic uncertainties
○ XGB selection variation
○ Yield extraction: variation of fit ranges, background and signal fit functions

● Apply developed procedure for multi-strange hadrons and hyper-nuclei
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https://docs.google.com/file/d/17B81HW8bbKM7Hb_QwyLKyiD_wc77aT3e/preview
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Backup slides
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● Well go and check out the following
● Two easy to use jupyter notebooks are available on the following links

○ https://colab.research.google.com/drive/10fD3XNnf_0qt12DiAzlQunbW7IVEqqIE?usp=sharing

○ https://colab.research.google.com/drive/1yV3xboB67trorfOKy1-VLT1kLxYdN6dn?usp=sharing

● our code on github 

https://colab.research.google.com/drive/10fD3XNnf_0qt12DiAzlQunbW7IVEqqIE?usp=sharing
https://colab.research.google.com/drive/1yV3xboB67trorfOKy1-VLT1kLxYdN6dn?usp=sharing
https://github.com/CBM-ML
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ML does not cut the background in an unexpected way, therefore, 
not introducing any bias 

The threshold on the ROC curve which maximizes AMS on the 
test data set is applied on the URQMD 100k events data set

Applying the model on the URQMD data set



● Get the fit parameters and use them as initial parameters 
● The final fit function 

● Get the fit parameters and use them as initial fit parameters for the 
whole mass range, the fitting function is 

Yield Extraction: The Fitting Procedure
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● Divide the data into pT-y bins
● Applied fitting to all the bins individually
● Apply a mass cut of 1.13<m<1.108 for a 2nd order pol background fit

pdf of pT rapidity bins divided data, with fitting

https://drive.google.com/drive/folders/1XwRNqexBVlvBravCq4jxBlEMym2Y3SxD?usp=sharing


Alessandro D. Falco, CPOD-2021
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Phase diagram

NUPECC Long Range 
Plan 2017

https://indico.cern.ch/event/985460/contributions/4264615/atta
chments/2211234/3742919/adf_cpod.pdf

https://indico.cern.ch/event/985460/contributions/4264615/attachments/2211234/3742919/adf_cpod.pdf
https://indico.cern.ch/event/985460/contributions/4264615/attachments/2211234/3742919/adf_cpod.pdf
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√sNN Run time Rint, kHz X- X+ Ω+

HADES (Ag) 2.6 GeV 4 wks 10 2.5x103

MPD S1 11 GeV 10 wks 5 1.5x106 8x104 1.5x104

CBM 3.8 GeV 1 wk 1000 4x109 5x106 3.3x105

Multi-strange yields

Compilation TG, QM2018

C. Blume, C. Markert, PPNP 66 (2011)
HADES Coll., PLB 778 (2018)
HADES Coll., PRL 103 (2009) 132301
RVUU: F. Li et al., PRC 85 (2012) 064902
UrQMD: J. Steinheimer et al., J.Phys. G43 (2016) 015104
ART: C.M. Ko et al., PLB595 (2004) 158-164
A. Andronic et al., NPA 772 (2006)
F. Becattini et al., PRC69 (2004) 024905
E. Seifert et al.,  PRC97 (2018)
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Blue and red lines are the precision with which we 
can measure yields assuming various scenario

Compilation TG, QM2018 

CBM √sNN Run time e % Rint Duty F % Yield

3
LH 4.7 GeV 1 wks 19 10 MHz 50 5.5x109

4
LHe 4.7 GeV 1 wks 15 10 MHz 50 2.7x108

6
LLHe 4.7 GeV 10 wks 1 10 MHz 50 146

Hypernuclei yield: CBM projections

22
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URQMD 
100k



Data cleaning/skimming

mass can’t be negative and we select mass greater or equal to the mass of proton and pion

Χ2 can’t be negative
24

Fixed target experiment, target position: (0,0,0)

The data contains some entries which does not make sense, so we clean it by pre cuts

Removes 3.2 % signal candidates from a set of 10k events (AU 12AGeV mbias URQMD)

But also removes 57 % background

p<20 pz > 0 0<Χ2primpos < 1x106 cosinepos > 0.5 0<l/dl<8000

pT<3 -1< z <80 0<Χ2geo < 103 cosineneg>0.1 abs (x) < 50

1<eta<6.5 0<distance< 100 0<Χ2primneg<3x107 Remove nan abs (y) < 50

1.07<mass<2.5 l<80 0<Χ2topo< 105 infinite values 0<l/dl<8000



Gradient boost: regressor, in simple words

Variable1 1 2

Variable2 3 4

Variable3 5 6

y 1 0

variables

target

First prediction

Pseudo residuals

Predicts this

U
si

ng
 th

es
e

2nd prediction

Over fits: 
Low bias
High 
variance

controls

3rd prediction

Step towards 
the main target

New 
residuals=y-y’’’

0.45 -0.45

Tree 2 = h2 0.45 -0.45

Newest 
prediction= y’’’’ = 
y’’’+0.1 * 
(tree 2)

0.595 0.405

Goes on

● GB: Trees predicting residuals and a 
learning rate to prevent overfitting

Further reading
https://xgboost.readthedocs.io/en/latest/tutorials/model.html

2 samples
X1 X2

Average of y = y’ 0.5 0.5

Residual = y - y’ 0.5 -0.5

Learning rate=0.1 0.1 0.1

New prediction=y’’’=y’+ 0.1* (tree) 0.55 0.45

Tree=h1 0.5 -0.5

Predicted=y’’ =y’+tree 1 0



  2. Fit m = 1 upto m=M number of trees 
a. Compute 

at F(x) = Fm-1(x)   for i =1,...,n

since first iteration so F(x)=Fo(x) -d/dF(x) {½  { yi - F(x) }2} =-(-(yi-F(x))) = yi-F(x)

1. Input: Data {(xi,yi)}
n

i=1 and a differentiable Loss Function L(yi,F(x))
If we choose L = ½  { yi - F(x) }2

Then 
d/dF(x) {½  { yi - F(x) }2} =(-(yi-F(x))) = F(x)-yi =-(residuals)

We minimize this F(x)-yi  for all values 

A predicted value which can minimize this sum is the average

= average = Fo(x)

Detailed Explanation GB

Residuals
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● Fit m = 1 upto m=M trees 

a. Compute at F(x) = Fm-1(x)   for i =1,...,n

b.  Fit a regression tree to the rim values and create terminal regions Rjm, for j=1,..,Jm (leaves but not with output values)
c. Determine the output value for each leaf:

for j=1,..,Jm compute 
again will turn out to be average if L = ½  { yi - F(x) }2

d. Update 
ν is learning rate and the equation in the box is the tree we just made
We started with F0 so 

● Output FM(x)  (The final classifier)

Detailed Explanation GB
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