

STATUS-UPDATE LIDAR

C. Fink, C. Fruck

P-ONE Virtual Collaboration Meeting

14.12.2020

A short recap I

A short recap II

Working principle:

- · Photons will eventually be scattered back to the detector
- Single-photon-counting MicroPMT detecting backscattered photons
- LiDAR001 at 168m
- LiDAR002 at 432m
- Goal: Complementary measurement of the attenuation length to STRAW
- Current best fit from STRAW at 465nm wavelength: L_{att} = 30m

Christopher Fink | P-ONE | Technical University Munich

First Measurements

- Both LiDARs functional and performing measurements
- Single measurements in the scale of seconds to minutes
- Best fits from the LiDARs:
 - $L_{att,LiDAR1} = 49m$
 - L_{att,LiDAR2} =150m
- Why the deviations?

Deviations from the Simulation

- Signal independent of time and direction
- Possible Explanation for LiDAR2: afterpulses
 in the MicroPMT
 - Photoelectrons ionize residual gases
 - Positively charged lons travel towards
 photocathode
 - Generate afterpulse upon impact
- (yet) no explanation for behaviour of LiDAR1

Simulating the Afterpulses

- Artificial Afterpulse signal
- Can we recreate the measured signal?
- Good agreement in the region of interest
- Not suitable for subtracting from measured data

Christopher Fink | P-ONE Collab. Meeting | LiDAR

Hitting the buoy

- Scan in order to hit the buoy ٠
- Inclination of 0.5° ٠
- 1ms integration time per scanned degree ٠
- Signal measured after the buoy: Afterpulses + ۰ Stray light + dark counts

- Measure the real afterpulse signal for LiDAR2
- Subtract it from measured signal for pure LiDAR signal
- Get explanation for behavior of LiDAR1

Thank you for your attention!

Christopher Fink | P-ONE Collab. Meeting | LiDAR