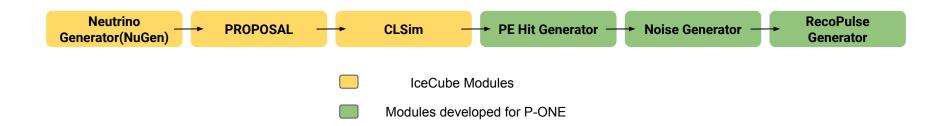

Detecting v_{τ} in P-ONE

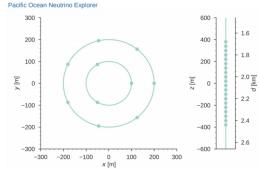
P-ONE Virtual Collaboration meet December 15 2020 Akanksha Katil

Importance of detecting v_{τ}

- v_{τ} not usually produced in the atmosphere. They exist only due to oscillations.
- Detecting v_{τ} will:
 - Reaffirm the astrophysical origins of high energy neutrinos.
 - Confirm the existing model of neutrino oscillations on cosmological scales.
- v_{τ} detection should be regarded as priority by future detectors.
- 20%-40% of the total astrophysical flux is contributed by v_{τ} .
- After 10 years of its construction, IceCube is on the verge of detecting the first v_{τ} with 90% C.L. Three potential candidates for v_{τ} events discovered so far.
- At high energies IceCube has no problem with detecting v_{τ} . At lower energies, due to scattering, hard to separate v_{τ} from background

Can P-ONE do better, given that there is less scattering in water?



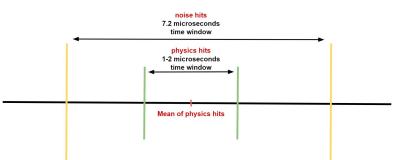

Simulation

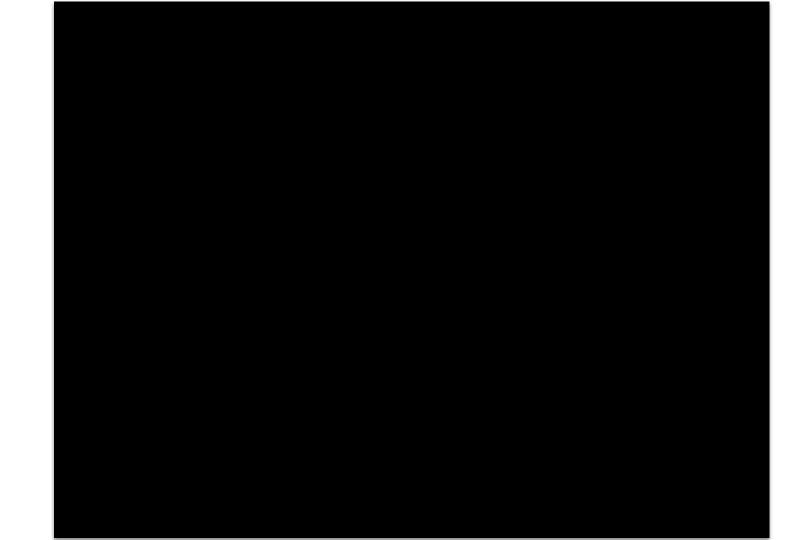
The Simulation Chain

- IceCube software for simulations. Uses Ice Tray framework.
- IceTray framework modules written in C++ accessed by using Python interface
- Geometry of the detector changed to match that of P-ONE phase 1.

Simulating mDOM

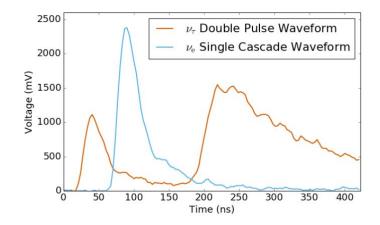
- Simulating IceCube mDOM, 24 3" PMTs and a flat angular acceptance.
- Angular acceptance of DOM depends on the PMT coverage area. $10 \times 3'' PMTArea \approx 10'' PMTArea$


$$\Rightarrow \frac{mDOMarea}{IcecubeDOMarea} \approx 2.4$$
$$2.4 \times \sum_{\theta=-1}^{1} f(\theta)_{IceCubeAngularAcceptance} = \sum_{\theta=-1}^{1} mDOMAngularAcceptance$$


- The angular acceptance is a constant value of 0.811
- The wavelength acceptance is set to be the same as IceCube's.

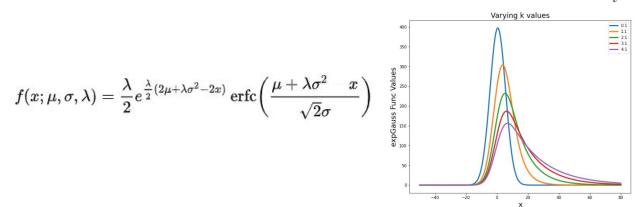
MC parameters

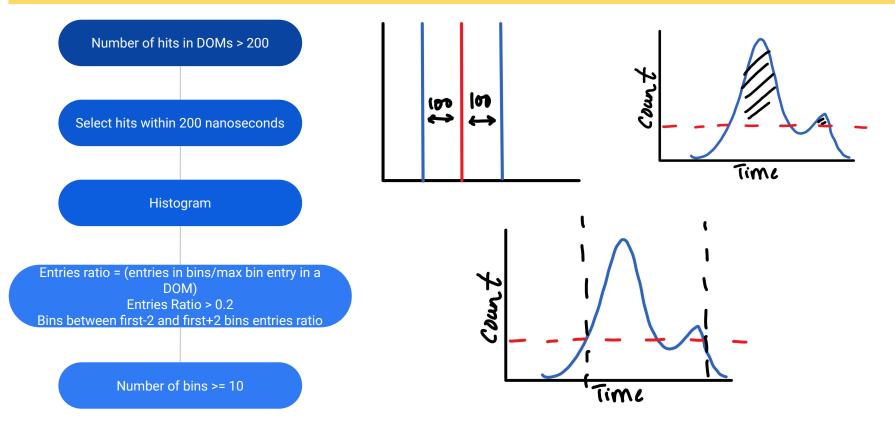
- NuGen settings:
 - Energy: 100TeV to 5PeV
 - Azimuth: 0 to 180 degrees
 - Zenith: 0 to 180 degrees
 - Interaction Cylinder parameters: h=1000m, r=500m
- Signals assume an mDOM, but no granularity.
- Noise, STRAW data from dark runs, is injected on top of physics hits.
- RecoPulse Generator:
 - The PMT response is simulated here, hits within 3 ns are merged as one, and their charges summed.
 - The width of the pulse is chosen to be a constant, in this case, it is set to 3 ns.
 - 0-1.5 ns smear is added to the timestamps
- 40,000 v_{τ} and v_{e} events simulated in total



Analysis

The Goal of the Analysis


- v_{τ} CC interaction produces a characteristic signal called Double Pulse.
- Double Pulse double cascades 1) Tau creation 2) Tau Decay
- Develop an algorithm that identifies tau neutrino signal from the background.


The Method

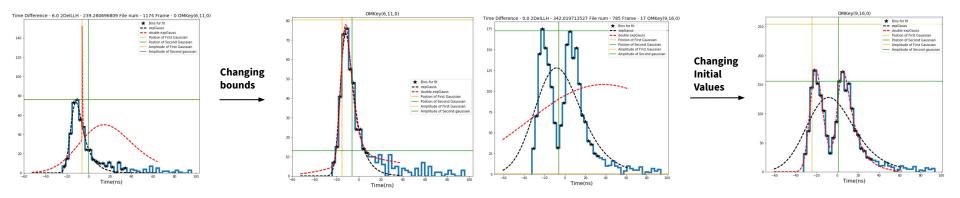
- The main background while detecting double peak signal is the CC interactions of electron neutrinos, NC interactions of neutrinos of all flavours and atmospheric muon neutrinos
- The algorithm fits both a single exponential gaussian and double exponential gaussian to every DOM in the event.
- Four parameters describe a single exponential gaussian mean, width, amplitude and k(defines how exponential the tail is)
- Parameters of the fit and log likelihood values are used to separate v_{τ} and background events.

The colours indicate the different k values

The Algorithm

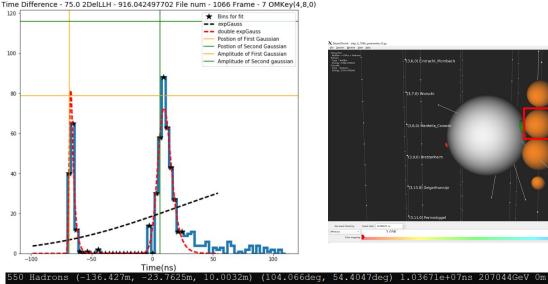
The Fit

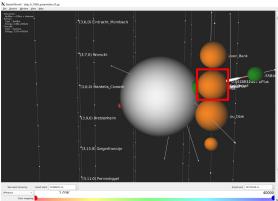
- Used IMINUIT minimizer.
- The **minimizer minimizes the -log likelihood** value given by:

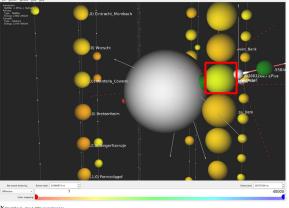

Ignored: Model
$$-\sum_{i} \ln(n_i!) + \mu_i - n_i \ln \mu_i$$

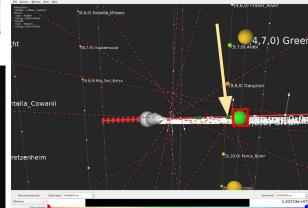
 μ_i = model n_i = data(Number of hits in a bin)

• Bounds and initial values given to the minimizer.

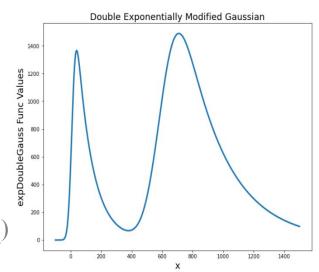

Does the Algorithm work as expected?

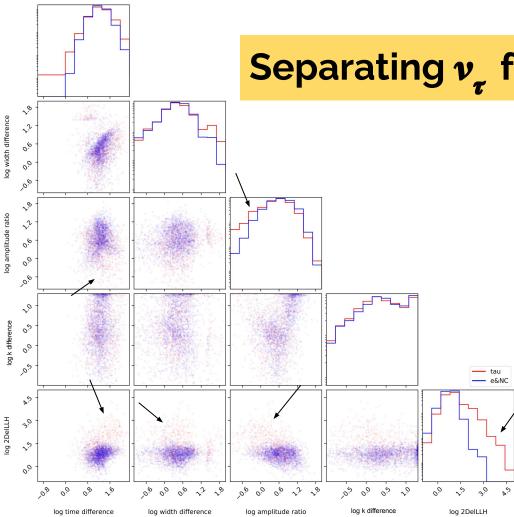

- Multiple checks were done to improve the algorithm by changing the bounds and initial values given to minimizer.
- Sensitive to initial values, looping over possible initial values.




Few examples of changing bounds and initial values to appropriate values to achieve a good fit

Suspicious NuEs and NC events



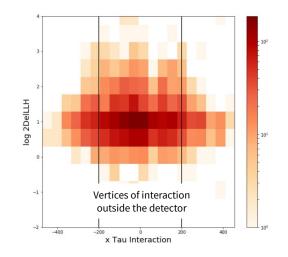


561 MuPlus (-136.427m, -23.7625m, 10.0032m) (104.066deg, 54.4047deg) 1.03671e+07ns 56.9355GeV 227.179m 585 MuPlus (-136.427m, -23.7625m, 10.0032m) (104.066deg, 54.4047deg) 1.03671e+07ns 56.9355GeV 51.1243m 586 DeltaE (-165.292m, -64.0876m, 22.4288m) (104.066deg, 54.4047deg) 1.03673e+07ns 0.890161GeV 0m 587 MuPlus (-165.292m, -64.0876m, 22.4288m) (104.066deg, 54.4047deg) 1.03673e+07ns 44.5932GeV 21.6877m 588 DeltaE (-177.537m, -81.1941m, 27.7m) (104.066deg, 54.4047deg) 1.03674e+07ns 4.7113GeV 0m 389 MULIUS (-1//.53/m, -81.1941m, 2/./m) (104.000aeq, 54.404/aeq) 1.030/4e+0/ns 35.0353GeV 5.9981m 590 DeltaE (-180.923m, -85.9252m, 29.1578m) (104.066deg, 54.4047deg) 1.03674e+07ns 0.509406GeV 0m 591 MuPlus (-180.923m, -85.9252m, 29.1578m) (104.066deg, 54.4047deg) 1.03674e+07ns 33.1886GeV 50.916m 592 DeltaE (-209.671m, -126.086m, 41.5328m) (104.066deg, 54.4047deg) 1.03676e+07ns 0.605584GeV 0m 593 MuPlus (-209.671m, -126.086m, 41.5328m) (104.066deg, 54.4047deg) 1.03676e+07ns 21.2607GeV 97.4524m 594 EPlus (-264.693m, -202.953m, 65.2184m) (88.5481deg, 307.068deg) 1.03695e+07ns 0.0203435GeV 0m 595 NuE (-264.693m, -202.953m, 65.2184m) (17.3608deg, 90.5706deg) 1.03695e+07ns 0.0424134GeV 0m 596 NuMuBar (-264.693m, -202.953m, 65.2184m) (162.862deg, 163.611deg) 1.03695e+07ns 0.0429015GeV 0m

Parameters for Comparison

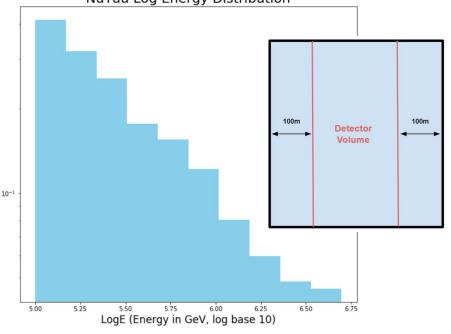
- The algorithm returns the mean, width, amplitude and k values of the fits.
- A double exponential gaussian has 8 parameters(double expGauss = expGauss₁ + exp Gauss₂)
- Time Difference = $position_2 position_1$
- Width Difference = $|width_2 width_1|$
- Amplitude Ratio = $amplitude_1/amplitude_2$
- k difference = $|k_2 k_1|$
- LLH difference = $2*(LLH_{double expGauss} LLH_{expGauss})$
 - Defines how likely the double expGauss model is the correct fit.

Separating v_{τ} from the background


- Some separation in log amplitude ratio.
- Most separation observed in log 2∆LLH.
- Introducing cuts in the data using log 2∆LLH(CUT VARIABLE)

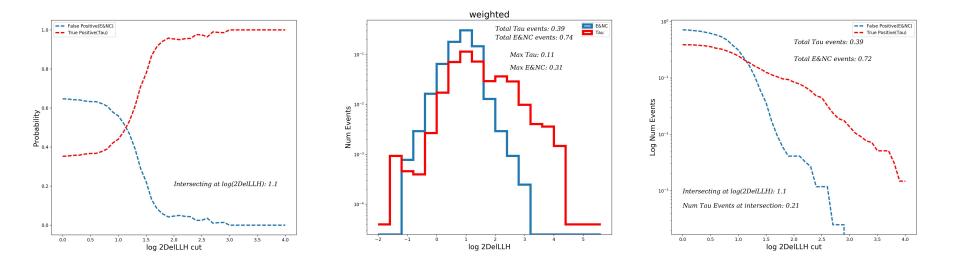
values will be most effective.

Tau length Correlation


- Ideally large tau length would mean large cut variable value .
- What happens with DOMs with large tau length and small cut variable?
 - Vertices(Tau creation and tau decay) are outside the detector.
 - Tau decays into a muon
 - \circ \quad DOM is not at an ideal distance from the vertices.

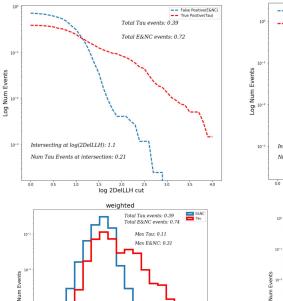
Weighting Events

- Each event has a corresponding weight associated with it.
- For the analysis here the events are weighted to include:
 - Signal from astrophysical v_r
 - Background from atmospheric muon neutrinos and other flavours of astrophysical neutrinos
- Desired v_{τ} events:
 - Charged Current interactions.
 - Interaction vertex should be within 100m around the detector volume in X and Y axis.



NuTau Log Energy Distribution

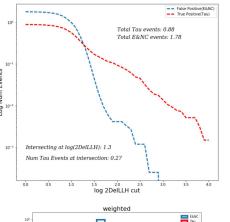
Expected CC v_r events per year: 1.68


Separating signal from background

- At cut variable 1.1 there is equal probability of the event being either a v_{τ} or background event
- Total v_{τ} events in a year is 0.39. Can this number be improved?

Improving the Number of v_{τ} events/year

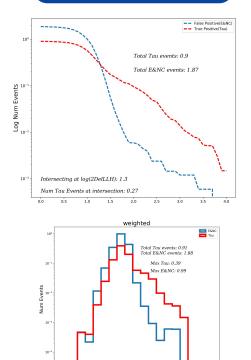
Number of hits in DOMs > 200



log 2DeILLH

10

107


Number of hits in DOMs > 0

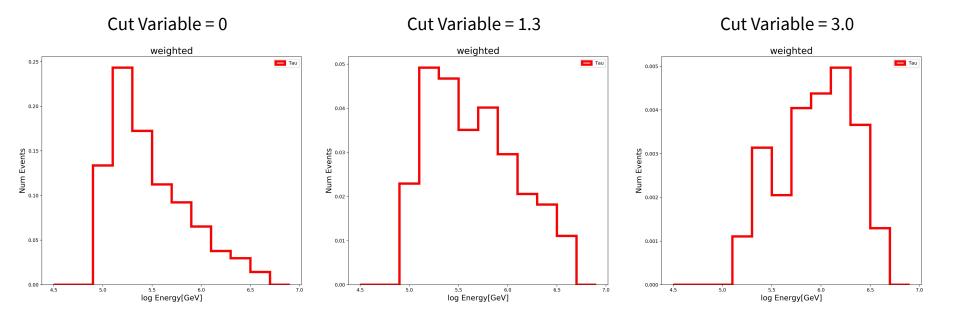
19"-19"-19"-19"+

log 2DelLLH

Number of bins >= 9

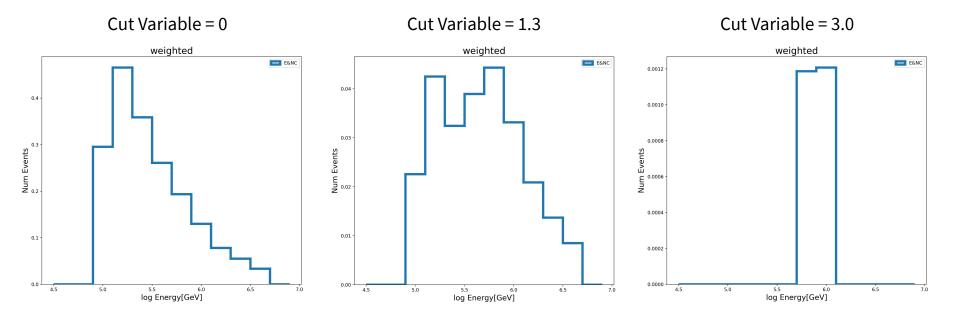
log 2DelLLH

The intersection point moves to the right as the number of events included in the analysis increases.


Improving the Number of v_{τ} events / year

Conditions Changed	Total NuE&NC Events	Total NuTau Events	Intersection Point	Tau Neutrino Events at Intersection Point	
Number of hits in DOMs > 200	0.72	0.39	1.1	0.21	
Number of hits in DOMs > 100	1.11	0.59	1.3	0.22	
Number of hits in DOMs > 0	1.78	0.88	1.3	0.27	
Number of bins >= 9	1.87	0.9	1.3	0.27	
Entries Ratio > 0.1 2.1		0.97	1.5	0.28	

21


Energy Distributions - Tau neutrino events

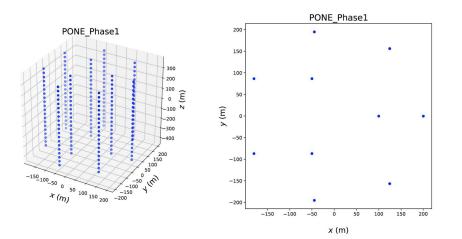
• The energy distribution shifts to the right as higher cut variable is imposed.

Energy Distribution - NuE&NC events

• The energy distribution shifts to the right as higher cut variable is imposed.

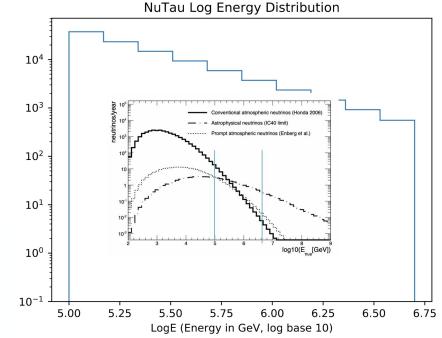
Conclusions and Next Steps

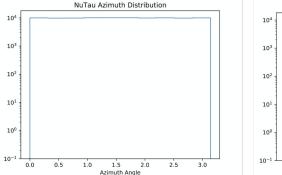
- The algorithm is successful in separating v_{τ} from the background.
- LLH ratio between single/double ExpGauss fits is the most effective parameter that shows a clear separation between tau neutrino and background.
- ~1 v_{τ} events expected in a year if the algorithm is capable of identifying all v_{τ} from the background.
- ~ 0.3 tau neutrino events with cut variable > 1.3 are detected in a year in P-ONE.
- The Algorithm can be further improved by having finer binning. The binning currently is motivated by icecube-type time resolution.
- Lower energies can be simulated to increase the number of v_{τ} events detected.
- Parameters other than 2Δ LLH can be explored to see more separation.
- DOMs with large number of hits($\sim >50,000$) can be eliminated from the analysis.
- Machine learning to enhance the separation between tau neutrinos and the background.

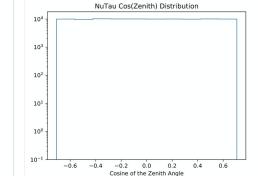

Thank You

Any Questions?

Backup

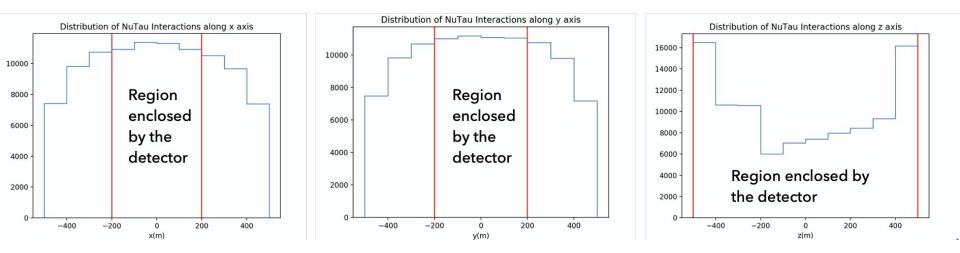

GCD File


- Before starting the simulation the Geometry(G), Calibration(C) and Detector(D) status information should be updated accordingly to match P-ONE.
- A new GCD file generated.
- Calibration and Detector Status information is irrelevant for P-ONE

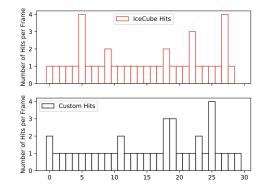


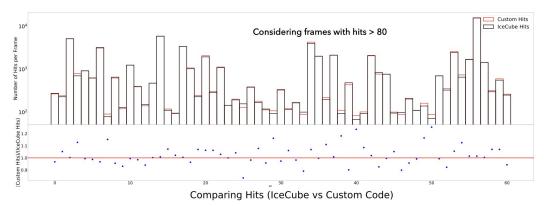
Neutrino Distributions

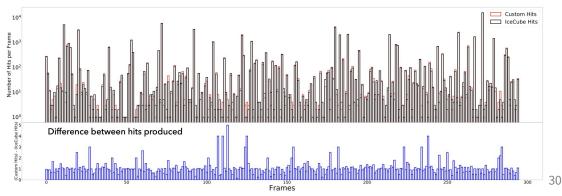
- Energy range given to the simulation is 100TeV - 5PeV
- Energy distribution looks as expected.
- Simulating events between Zenith(-45, 45) and Azimuth(0, 180), no bias observed.



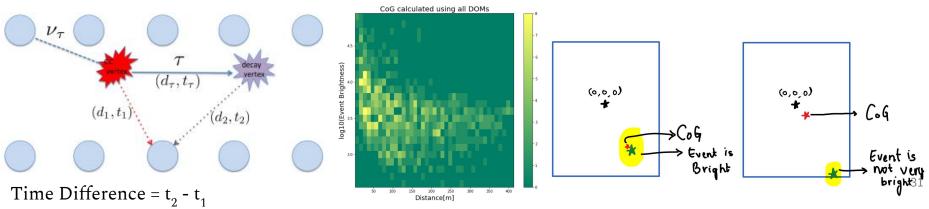
Vertex of Interaction of Neutrinos


Distributions of interactions of neutrinos to produce corresponding lepton

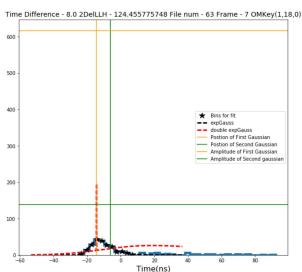

The dimensions of interaction cylinder given - Radius - 500m, height - 1000m, centered at (0, 0, 0)


Comparing Hits

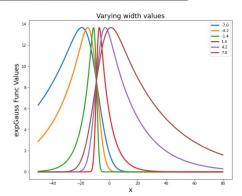
- Frames with hits > 80 are closer to one as expected.
- The frames need enough statistics to get ratio closer to one.
- Number of hits from frames not common to output files from both

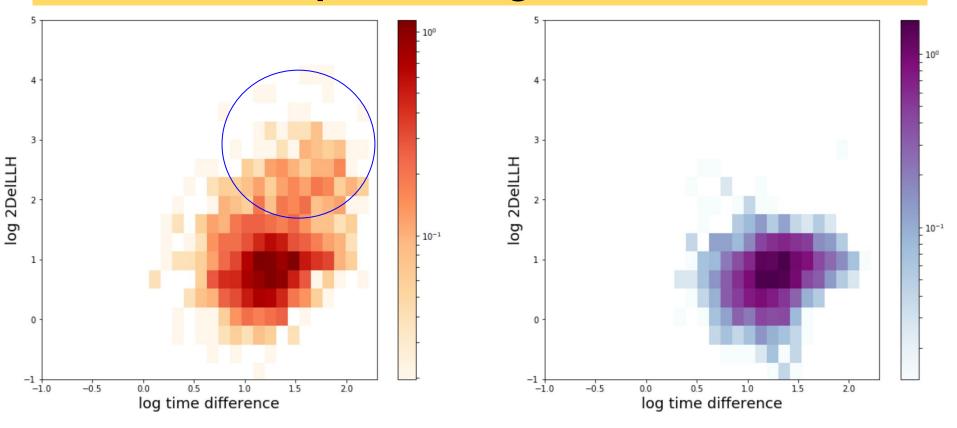

Comparing Hits (IceCube vs Custom Code)

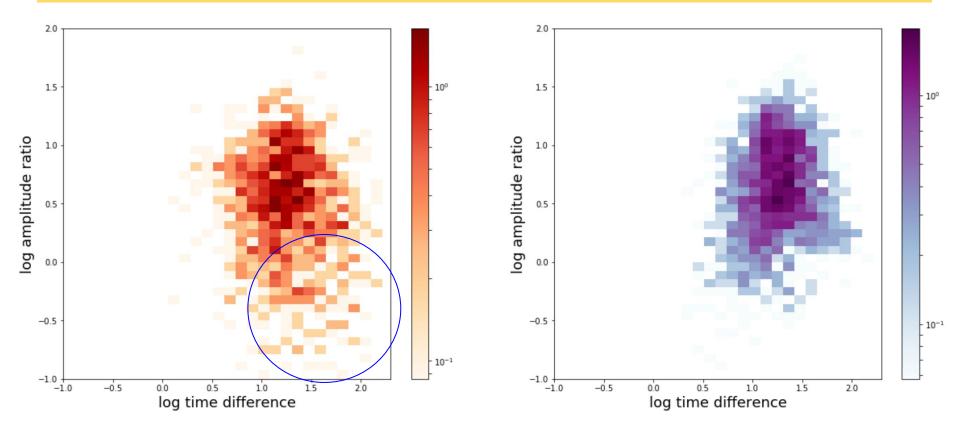
CoG

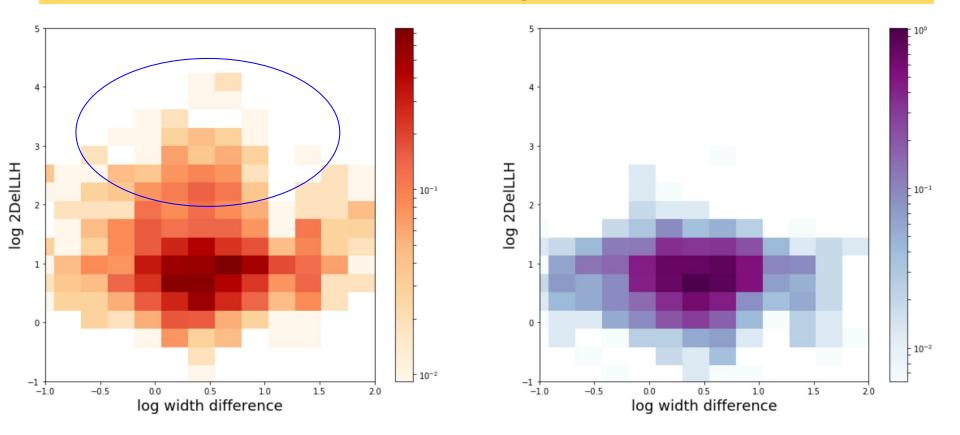

- Identify DOMs with double pulse signature relative to Centre of Gravity(CoG) of hits?
- Selected DOMs using time difference method. However most doms only have a single peak.
- Minimum distance between DOM and CoG does not show much correlation.

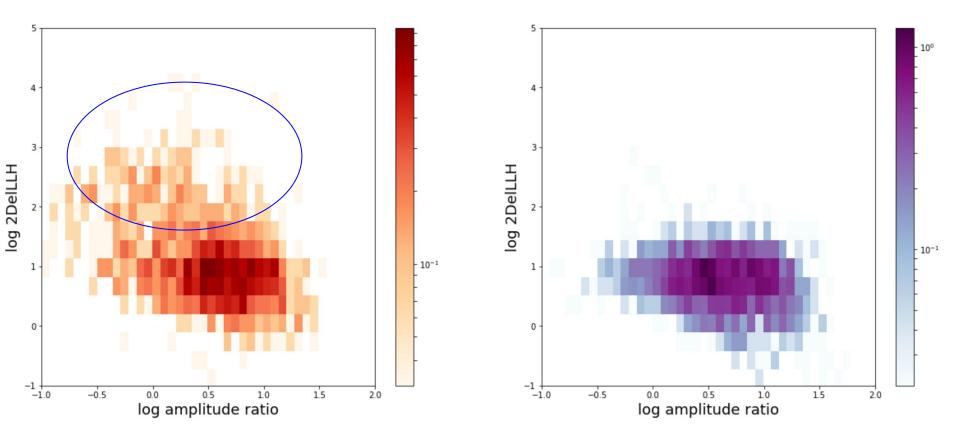
Bounds and Initial Values of the Fit

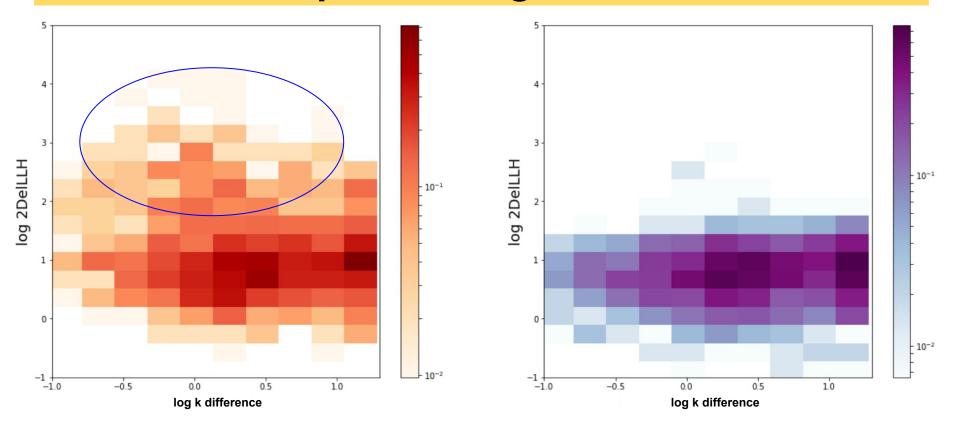

• Width needs to be negative, to change the direction of the exponential tail. However, the caveat here is that the minimizer outputs a NaN once it starts considering width


values between (-0.999, 0.999)

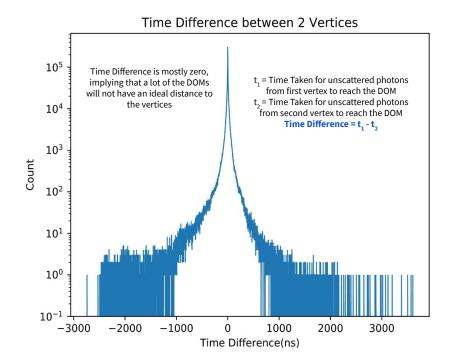



	pos1	wid1	k1	amp1	pos2	wid2		k2 ar	1p2 log l	ikelihood		
	-14.4044	-0.0734752	0.134472	237.057	-5.96877	18.3955	6.091	133 248.	598	nan		
	pos1	wid1	k1	amp	1 po	os2	2 wid2		amp2	log likelihood		
	-14.3644	-0.05513	0.427769	638.7	8 -5.99	934 23	.245	1.34232	74.7544		nan	


• The same with k, values should be between (0, 0.99).



Weighting Events


$$weight_{CC} = \frac{\phi_{astro} \times OneWeight}{N/4}$$

$$weight_{NC,\nu_{\mu}} = \frac{(3\phi_{astro} + \phi_{atmo,\nu_{\mu}}) \times OneWeight}{N/2}$$

$$weight_{NC,\overline{\nu}_{\mu}} = \frac{(3\phi_{astro} + \phi_{atmo,\overline{\nu}_{\mu}}) \times OneWeight}{N/2}$$

N = Number of files $OneWeight = \text{Taken from I3MCWeight} \qquad \frac{d\Phi_{\nu+\bar{\nu}}}{dE} = (1.01 \pm ^{0.26}_{0.23}) \left(\frac{E}{100 \text{ TeV}}\right)^{-2.19 \pm 0.10} \cdot 10^{-18} \text{GeV}^{-1} cm^{-2} s^{-1} sr^{-1}.$

Time Difference

