


Michal Simon

High throughput erasure
coding with XRootD client

&S XRootD




Outline

Design
Write tests on AliceO2 cluster
Further developments




XrdEc design

For better performance uses only asynchronous APIs

Intel ISAL (Intel Storage Acceleration Library) — state of
the art implementation of Reed Solomon codes

Hardware assisted CRC32C

Distribute chunks uniformly including spare locations
(e.g. 6 data + 2 parity + 2 spare)




XrdEc design

At every location two files are created: objid.data.zip
and objid.metadata.zip
objid.data.zip: contains the raw data; each data
chunk stored in a separate file; vanilla ZIP
archive except for the checksum (we use
CRC32C instead of CRC32)
objid.metadata.zip: contains the metadata for each
objid.data.zip file, replicated over all locations (at
least #parity + 1)




XrdEc design

- User writes are
buffered into full blocks

- The blocks are
erasure coded and
checksumed in a
thread-pool (in
parallel)

- Ready blocks are
written in-order into
the destination servers

Buffer user data

Process Full Blocks
(CRC32C + RS)

2

Write blocks in-order

Thread Pool
(process in parallel)

—{ Dequeue block

Generate Placement

—— Do remote ZIP Append




AliceO2 write tests

~10% of the target production system, ~10% of the cluster capacity
Transfer duration hist.

_ 10GB/s of aggregate
107 - throughput (200 streams),
5 1 hour run, 6 data servers
» mz_: Avg duration: 974 msec
5 Avg transfer rate: 2.15GB/s
Transfer rate stdev: 0.418
1 Transfer duration stdev: 290
10+ 3
mﬂ';

T T T I T T T T T
1000 2000 3000 4000 5000 6000 F000 8000 000
duration in ms (bin size = 0.1s)

(iR r-ﬁﬁJ
3

&

\

A



AliceO2 write tests

~20% of the target production system, ~10% of the cluster capacity
Transfer duration hist.

10%

20GB/s of aggregate
) throughput (400 streams),
0 1 hour run, 6 data servers

Avg duration: 1063 msec
Avg transfer rate: 1.97GB/s
Transfer rate stdev: 0.400
Transfer duration stdev: 244

104

count

10!

10°

1000 1500 2000 2500 3000
duration in ms (bin size = 0.15)




count

AliceO2 write tests

~30% of the target production system, ~10% of the cluster capacity

Transfer duration hist.

1000 1500 2000 2500 3000 3500
duration in ms (bin size = 0.15)

30GB/s of aggregate
throughput (600 streams),
1 hour run, 6 data servers

Avg duration: 1127msec
Avg transfer rate: 1.84GB/s
Transfer rate stdev: 0.317
Transfer duration stdev: 272




Plans

Test read performance

Provide XRootD client plug-in

Adopt PgWrite (once implemented) for transportation

Minimal overhead (reuse the checksums when
appending new blocks)

If user buffer is block aligned optimize out copying data
to internal buffer




Plans

The update problem

Even if a single byte has been changed we need to
update several files on several remote devices

The file containing the raw data and all the parities
The update has to be done in a atomic way

Either it is successful and all stripes have been
updated or it failed and non of the stripes have
been updated

Difficult to implement: consider user doing Ctrl+C during
the update




Plans

Update: range cloning to the rescue
What can we do?
Get new object ID from MGM
In memory update the block and recalculate the
parities
Create a new sparse file with the updated block
Clone the remaining part of the file

Newer file systems (XFS, Cenots 8) support
sharing physical storage between multiple files
(ioctl_ficlonerange)

Commit new version




Plans
Update: range cloning to the rescue

Original file




Plans

Update: range cloning to the rescue

Original file One updated block

I ’___.ih |
CERN )Y

N/
e



Plans

Update: range cloning to the rescue

Original file Updated file

The blue blocks are shared between the two versions of the file

I ’___.ih |
CERN )Y

N/
"SZA



Questions?




