

Topics

OSD-Model implementation on EOS-wnc

Introduction

It is the outlook of the theoretical background for EOS-wnc software development process management.

Background

Theoretical definitions and methodology

Graph theory

Definition 1. An undirected graph G is a pair G = (V, E), where V is a set of vertices (singular: vertex), and E is a set of edges, i.e. two-sets (set with two distinct elements) of vertices. The vertices x and y of an edge $e = \overline{xy}$ are called the endpoints of the edge. The edge $e = \overline{xy}$ joins x and y and it is incident on x and y. A vertex that does not belong to any edge is the singular vertex.

Lean software development

Follow simple principles:

- 1. Eliminate waste
- 2. Amplify learning
- 3. Decide as late as possible
- 4. Deliver as fast as possible
- Empower the team
- 6. Build integrity in
- 7. Optimize the whole

Kanban method

- Upgrade of the lean software development
- Kanban boards
- Managing workflow
- Kanban metrics

JIRA project management tool

OSD-model

Functionality graph (f-graph)

Definition 2. Let P be a software product. The functionality graph G^P (shortly f-graph) of a software product P is a weighted undirected graph of functionalities and f-influences. Each vertex from the set of vertices in the f-graph G^P , which we denote also as $V(G^P)$, represents the functionality, and each edge from the set of edges in G^P , which we denote also as $E(G^P)$, represents the f-influence. The weights for vertices and edges in this graph are the following.

 π .. the description of vertices and edges:

$$\pi: V(G^P) \cup E(G^P) \rightarrow \Pi_f \cup \Pi_i$$

 $\Pi_f = \{ \text{"descr. of functionality } v_1 \text{"}, \text{"descr. of functionality } v_2 \text{"}, \ldots \}$
 $\Pi_i = \{ \text{"descr. of f-influence } e_1 \text{"}, \text{"descr. of f-influence } e_2 \text{"}, \ldots \}$

 δ .. the development cost of vertices and edges:

$$\delta: V(G^P) \cup E(G^P) \to \mathbb{Z}_{\geq 0}, \quad e \in E(G^P), \ v \in V(G^P)$$

 $\delta(v) = 0 \ if \ it \ is \ the \ devel. \ cost \ of \ existing \ functionality \ v$
 $\delta(v) > 0 \ if \ it \ is \ the \ devel. \ cost \ of \ funct. \ v \ that \ should \ be \ developed$
 $\delta(e) = 0 \ if \ it \ is \ the \ devel. \ cost \ of \ existing \ f-influence \ e$
 $\delta(e) > 0 \ if \ it \ is \ the \ devel. \ cost \ of \ f-influence \ e$

 $\tilde{\delta}$.. the development status of vertices and edges:

$$\begin{split} \tilde{\delta}: V(G^P) \cup E(G^P) &\to \{0,1\}, \quad e \in E(G^P), \ v \in V(G^P) \\ \tilde{\delta}(v) &= \begin{cases} 0 \ , \ if \ funct. \ v \ should \ not \ be \ (or \ has \ been \ already) \ developed \\ 1 \ , \ if \ funct. \ v \ should \ be \ developed \end{cases} \\ \tilde{\delta}(e) &= \begin{cases} 0 \ , \ if \ f\text{-}influence \ e \ should \ not \ be \ (or \ has \ been \ already) \ developed \\ 1 \ , \ if \ f\text{-}influence \ e \ should \ be \ developed \end{cases} \end{split}$$

$$\vartheta: V(G^P) \cup E(G^P) \to \mathbb{Z}_{\geq 0}, \quad e \in E(G^P), \ v \in V(G^P)$$

 $\vartheta(v)$ is the test (unit test) cost of functionality v
 $\vartheta(e)$ is the test cost of f-influence e

 $\tilde{\theta}$.. the test status of vertices and edges:

 ϑ .. the test cost of vertices and edges:

$$\begin{split} \tilde{\vartheta}: V(G^P) \cup E(G^P) &\to \{0,1\}, \quad e \in E(G^P), \ v \in V(G^P) \\ \tilde{\vartheta}(v) &= \begin{cases} 0 \ , \ if \ funct. \ v \ should \ not \ be \ (or \ has \ been \ already) \ unit \ tested \\ 1 \ , \ if \ funct. \ v \ should \ not \ be \ (or \ has \ been \ already) \ tested \end{cases} \\ \tilde{\vartheta}(e) &= \begin{cases} 0 \ , \ if \ f\text{-influence} \ e \ should \ not \ be \ (or \ has \ been \ already) \ tested \\ 1 \ , \ if \ f\text{-influence} \ e \ should \ be \ tested \end{cases} \end{split}$$

 σ .. the significance weight of vertices and edges:

$$\sigma: V(G^P) \cup E(G^P) \rightarrow [0,1], where \sum_{v \in V(G^P)} \sigma(v) = 1 \ and \sum_{e \in E(G^P)} \sigma(e) = 1 \quad (1)$$

 λ ... the implementation cost of vertices and edges:

$$\lambda: V(G^P) \cup E(G^P) \to \mathbb{Z}_{\geq 0}, \quad e \in E(G^P), \ v \in V(G^P)$$

$$\lambda(v) = \delta(v) \ \tilde{\delta}(v) + \vartheta(v) \ \tilde{\vartheta}(v) \ \text{and} \ \lambda(e) = \delta(e) \ \tilde{\delta}(e) + \vartheta(e) \ \tilde{\vartheta}(e)$$
(2)

 ϵ .. the implementation value of vertices and edges.

$$\epsilon: V(G^P) \cup E(G^P) \to [0,1], \quad e \in E(G^P), \ v \in V(G^P)$$

$$\epsilon(v) = \tilde{\delta}(v) \ \tilde{\vartheta}(v) \ \sigma(v) \ and \ \epsilon(e) = \tilde{\delta}(e) \ \tilde{\vartheta}(e) \ \sigma(e)$$

$$(3)$$

Significance weight defined in (1) is defined as a probability density function restricted to $V(G^P)$ or $E(G^P)$ and therefore has values in [0,1]. Significance weights $\sigma(v)$ and $\sigma(e)$ for functionality v and f-influence e are estimated relative to other functionalities and f-influences regarding to their relative importance from a customer's point of view. We assume that values for significance weights functions are defined and its definitions are not scope of this article.

Gregor Molan

Example of the f-graph

Functionality	The functionality presented as a graph weight value $\pi(v)$
group	EOS function group
goesched	EOS function goesched
attr	EOS function attr

f-influence	The f-influence presented as a graph weight value $\pi(e)$
group-group	stand-alone testing of group function
group-goesched	testing of connections between functions group and geosched
geosched-goesched	stand-alone testing of group geosched
goesched-attr	testing of connections between functions geosched and attr
attr-attr	stand-alone testing of attr function

f-graph for the EOS-wnc

Gregor Molan

JIRA integration

Implementation phase

Definition 4. Let G^P be the f-graph. The **test suite** of the f-graph G^P is a subgraph $H \subseteq G^P$, which does not have isolated vertices, if number of vertices |V(H)| > 1. Test suite also defines values for test status weight $\tilde{\vartheta}()$ and values for development status weight $\tilde{\delta}()$ for all vertices and edges from this test suite.

Definition 5. Let G^P be the f-graph. An implementation phase \mathcal{H} of the f-graph G^P is the finite sequence of n test suites that covers all vertices and all edges from the f-graph:

$$\mathcal{H} = \{^{i}H\}_{i=1}^{n}, \text{ where } \bigcup_{i=1}^{n} V(^{i}H) = V(\mathcal{H}) = V(G^{P})$$

$$\text{and } \bigcup_{i=1}^{n} E(^{i}H) = E(\mathcal{H}) = E(G^{P}).$$

$$\tag{11}$$

Let us write $V({}^{i}H)$ for a set of all vertices in the test suite ${}^{i}H$ and $V(\mathcal{H})$ for a set $\cup_{i=1}^{n}V({}^{i}H)$. Analogously for sets of edges $E({}^{i}H)$ and $E(\mathcal{H})$. For a test suite ${}^{i}H$ we call index $i \in \mathbb{Z}^{+}$ a **test suite identifier of** ${}^{i}H$. According to Definition 4 the subgraph presents the test suite in a testing process.

Gregor Molan

OSD algorithms

Optimum software development (OSD)

Definition 7. Let G^P be the f-graph, δ_T the development cost for a trivial implementation phase, and let $W \in \mathbb{Z}_{\geq 0}$ with $W \geqslant \delta_T$. The optimal implementation phase for G^P and for given W is the implementation phase $\mathcal{H}_{opt} = OIP(G^P, W)$, such that $\lambda(\mathcal{H}_{opt}) \leqslant W$ and

$$\forall \mathcal{H} : (\epsilon(\mathcal{H}) > \epsilon(\mathcal{H}_{opt})) \Rightarrow (\lambda(\mathcal{H}) > \lambda(\mathcal{H}_{opt})).$$
 d (12)

OSD algorithms

maximize
$$\epsilon(\mathcal{H}_{\tilde{\vartheta}_S\tilde{\delta}_T}),$$

subject to $\lambda(\mathcal{H}_{\tilde{\vartheta}_S\tilde{\delta}_T}) \leq W,$
 $S \subseteq E(G^P), \ \tilde{\vartheta}_S(S) = 0,$
 $T \subseteq V(G^P), \ \tilde{\delta}_T(T) = 0.$

Conclusion and future work

Theoretical background is successfully used in EOS-wnc software development process.

Future work: Software integration of OSD algorithms with JIRA.

