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• LHC experiments rely on huge amounts on disk for data processing (reconstruction, 
analysis) and storage

• CERN pledged about 100 PB of disk in 2020!

• Such infrastructure is very expensive in terms of purchasing cost and operations

• A flat budget is the best we can expect

• Need to optimize both operations and disk utilization

• The first step is to understand how we use it today, quantify how well it is used and what can be improved

Introduction
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• Three different sets of analyses, at very different levels

• Hard disk failures: how to predict when HDDs are going to fail and how to make hardware interventions 

more efficient and best preserve data integrity (Federico)

• CERN EOS storage logs: understand how experiments use their disk storage, which can provide 

valuable insight on optimization of the EOS infrastructure (Olga)

• Measuring data popularity and storage usage efficiency: using real data access patterns, understand 

what kind of data is most popular and how well storage is used, to see if it could be used even better 

(Andrea)

Structure of the talk
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• More than 66 000 magnetic hard disks daily in production

• More than 100 000 magnetic hard disks observed over a period of 30 months

• More than 130 different hard disk models

• Total replaced magnetic hard disks: ~ 15 000/y (~ 550/y due to HDD failures)

Magnetic Hard Disk in Storage



• Magnetic disks units are among the most frequently failing components of storage systems
and disk failures resulting in about 78% of cloud server system failures.

• Those failures often require rapid human intervention or at least a costly consistency
check by service operators. In the worst case, disk failures can lead to permanent data loss.

• While the fault tolerance techniques often diminish the risk of permanent data loss, they
usually also reduce the usable system performance due to their additional internal recovery
operations.

A forecast of hard disk failures would reduce the risks of unscheduled maintenance
and data loss

[1] R. Nachiappan, B. Javadi, R. N. Calheiros, and K. M. Matawie, “Cloud storage reliability for big data applications: A state of the art survey”, Journal of Network and
Computer Applications, vol. 97, pp. 35–47, 2017.

Impact of Hard Disk Failures
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Hard disk data are gathered by Hedison (HEalth DISk mONitoring), a tool provided by IT-CF 
that collect HDD's information. [2]

How Do We Find Failed HDD?
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"A disk is classified as broken if it has been removed and all other hard disk 

belonging to the same host machine continue to operate nominally"

[2] https://gitlab.cern.ch/hw/hedison

In the figure, there is an example of a host machine 

with:

1. A hard disk presenting a gap of measures

2. A host decommissioning

3. A hard disk removed because of a failure

http://[]https:/gitlab.cern.ch/hw/hedison
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Hard Disk Annual Failure Rate by Model



Failure Prediction with Machine Learning
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Hedison (HEalth DISk mONitoring) 



Raw Data and Processing

Raw Data need to be pre-processed and 

cleaned because of:

1. Measure Gaps

2. Missing Attributes

3. SMART sensors are proprietary

technologies dependent

4. Errors in Measures

5. Disks moving (between hosts, Wigner

etc.)

It is then necessary to split the dataset 

(broken/healthy)

Attribute name [3] Attribute name [3]

01 Read Error Rate 12 Power Cycle Count

03 Spin-Up Time 192 Unsafe Shutdown Count

04 Start/Stop Count 193 Load Cycle Count

05 Reallocated Sectors 

Count

194 Temperature

07 Seek Error Rate 197 Current Pending Sector 

Count

09 Power-On Hours 198 Uncorrectable Sector 

Count

10 Spin Retry Count 199 UltraDMA CRC Error 

Count
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[3] https://en.wikipedia.org/wiki/S.M.A.R.T.

https://en.wikipedia.org/wiki/S.M.A.R.T.


Training of a Regularized Greedy Forest

Some machine learning models have been tried
(Random Forest, Support Vector Machine, 
Gradient Boosting Machine etc.) but the most
promising was Regularized Greedy Forest (RGF).

RGF is a tree ensemble machine learning method for 
regression and classification problems. [4]

This decision tree is used to decide which hard 
disk needs to be replaced.

More info about code source: https://github.com/RGF-
team/rgf
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[4] Johnson, Rie, and Tong Zhang. "Learning nonlinear functions using regularized greedy forest." IEEE transactions on pattern analysis and 

machine intelligence 36.5 (2013): 942-954.



False Positive Rate
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The False Positive Rate 

(FPR) is the probability of 

false alarm. In this context, 

the reduction of false positives

is very important: a high rate 

of false positives would cause 

increased work for operators.

The system tuning must be 

done with a view to reducing 

false positives and false 

negatives.



Positive Likelihood Ratio
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The goal of parameter tuning 

must be the maximization of 

an index that takes into

account both false positives

and false negatives. 

The Positive Likelihood

Ratio (usually abbreviated as

LR+) is the ratio between the 

sensitivity, which takes into 

account the rate of true

positives and the false 

positive rate.



Model Accuracy* Recall* FPR* PLR*

HGST_HMS5C4040BLE640 99.95% 99.9% 0.10% 1000.0

HGST_HUS726060ALE610 95.12% 91.7% 0.57% 157.7

Hitachi_HUA5C3030ALA640 98.25% 96.8% 0.25% 396.7

Hitachi_HUA723030ALA640 99.85% 99.9% 0.25% 400.0

ST4000NC001-1FS168 88.15% 77.4% 1.15% 69.2

TOSHIBA_MG04ACA600E 99.80% 99.9% 0.25% 393.1

TOSHIBA_MG07ACA12TE 99.88% 99.9% 0.15% 612.1

Results

13
*The values in the table represent the medians of each index calculated on a sample of 30 experiments



• Different levels of performance for different hard disk models.

• Performance is highly linked to the volume of data with which the models are trained. The 
system is designed to collect new data from hard disks and improve new training on a daily
basis.

• The prototyping phase has currently achieved satisfactory results for some models and soon
the putting in production of the system will be discussed.

Conclusions
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CERN Storage System 
analysis using EOS 

Report Logs
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Motivation
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• EOS Report Logs: detailed data about EOS system and user file accesses: 

creations, accesses, deletions etc.

• Our goals:

• Understand the differences between EOS instances (experiments) 

• Understand the popularity and the lifecycle of the data 

• Evaluate a potential usefulness of a caching layer

• Find unexpected uses 



Raw data

(~100MB - 8GB 
per day)

• EOS report logs (.eosreport.gz, compressed format)

• Metrics: fid, access time, file size, read/written bytes etc.

• A separate instance for each experiment

Processed 
data

(~600MB - 7GB 
per month)

Statistics & 
Plots

• Parsing, filtering, grouping

• Save back to EOS as .parquet 
files

• Take samples and save as 
.csv files

Data source / Analysis Workflow
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Metric LHCb CMS ALICE ATLAS

Other Operations

(% of all operations)
0.23% 0.57% 0.00% 0.27%

Other Operations

(% of related files)
0.12% 0.36% 0.00% 0.24%

Other Operations

(% of Total Volume)
0.02% 0.19% 0.00% 0.02%

(𝑜𝑠𝑖𝑧𝑒 == 0 𝒂𝒏𝒅 𝑐𝑠𝑖𝑧𝑒 > 0 𝒂𝒏𝒅
𝑤𝑏 > 0 𝒂𝒏𝒅 𝑟𝑏 == 0)

Create

(𝑜𝑠𝑖𝑧𝑒 > 0 𝒂𝒏𝒅 𝑐𝑠𝑖𝑧𝑒 == 𝑜𝑠𝑖𝑧𝑒 𝒂𝒏𝒅
𝑤𝑏 == 0 𝒂𝒏𝒅 𝑟𝑏 > 0)

Read

(! 𝑐𝑟𝑒𝑎𝑡𝑒 𝒂𝒏𝒅 ! 𝑟𝑒𝑎𝑑) Other

Update

Empty

“Abnormal”

• Not much influence from ”abnormal” operations. 

• Confirmed: Data is immutable. 
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Operations Classification
3 Months Period: 01/01/2020 – 31/03/2020



Total Workload
3 Months Period: 01/01/2020 – 31/03/2020
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Highlights:

• EOS Instance Volume: LHCb < 

CMS < ALICE < ATLAS.

• Total Turnover (sum of read 

and written bytes) exceeds the 

instance volume. ALICE has 

the most intense workload.

• The division between reads 

and writes: all experiments 

read more than write. LHCb 

has ~30% more writes, CMS 

and ATLAS experiments have 

2-3 times as much reads as 

writes. 

• Even from these aggregated 

statistics, we could already see 

that experiments are using the 

provided volume in a very 

different manner.



File Categories Distribution
3 Months Period: 01/01/2020 – 31/03/2020
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ATLAS

ALICE

CMS

LHCb



File Categories Distribution
3 Months Period: 01/01/2020 – 31/03/2020
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ATLAS
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LHCb
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Not Read

Not Read

Read

Read

Not Read
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ATLAS

ALICE

CMS

LHCb

Read

Not Read

Read

Not Read

Not Read

Read

Read

Not Read

File Categories Distribution
3 Months Period: 01/01/2020 – 31/03/2020
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Read Workload
3 Months Period: 01/01/2020 – 31/03/2020

Average Fraction Read per File

Highlights:

• A big fraction of the 

workload re-reads the 

same files (CMS, ALICE, 

ATLAS).

• A large number files are 

read repeatedly (CMS, 

ALICE).

• Plan to take a closer look 

at the individual files’ 

popularity to see the 

caching potential (next 

slides).

• Files are not always read 

fully, but on average the 

rate is ~90-95%.
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Cumulative File Size Distribution
3 Months Period: 01/01/2020 – 31/03/2020

LHCb CMS ATLAS ALICE

<1MB 69.65% 64.15% 43.20% 47.53%

<1GB 95.09% 95.15% 87.57% 99.24%

LHCb CMS ATLAS ALICE

<1GB 22.82% 19.41% 30.18% 97.26%



25

Number of Accesses per File 
3 Months Period: 01/01/2020 – 31/03/2020, CMS

Highlights:

• Most files were accessed very few times (<10);

• Most volume was accessed up to 100 times;

• Files accessed >100 times contribute ~40% to the system load.
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Access Time Patterns
3 Months Period: 01/01/2020 – 31/03/2020, CMS

Highlights:

• If a file is re-read, it is most likely re-read immediately (within a couple of hours)

• There is a big variation in the number of accesses per day



Conclusions
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• The collection of the log data is critical for our analysis. We greatly suffer from data quality violations. 

• We observed a rich set of behaviours (varies from experiment to experiment, the choice of the time 

period might change the results completely)

• The period of consideration is relatively short. We should not extrapolate these results to bigger time 

periods

• Our plans

• Extend the period (including data taking)

• Expand to other tiers (to cover all the workloads)

• Further explore caching potential



Effect of storage caches 
and data popularity
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• At HL-LHC both storage and network will be (very) limited resources

• Need to define more efficient strategies for data management

• Reducing data replication and wide area network traffic at the same time may not be possible

• Storage caches are a simple and effective way to optimize

• Copy only what jobs really need for the time they need it

• Centralize custodial replicas of data in a few, large regional centers (often federations of sites)

• Still, experiment data management is still extremely relevant

• Impossible to make extensive infrastructure changes by Run3

• A lot can be achieved by better data placement strategies in Rucio and equivalent systems

Motivation
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• A “what if” scenario: replay actual data access 
records to estimate the effect of a hypothetical site 
cache

1. Pretend that all file accesses are remote

2. Treat the first access to a file like a cache miss and 

subsequent accesses as cache hits

3. Perform a “garbage collection” on the cache when needed

• Both ATLAS and CMS have detailed file access 
records, providing information like:

• File name, size, location of access, time of access, number 

of bytes read/written, etc.

• All this data is kept in HDFS and can be processed with 

Spark

Studying the effect of storage caches
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(infinite cache)



• Different cache management strategies:

• High/low watermarks to free up space, e.g. 

according to LRU criteria

• Remove files not accessed since more than N 

days

• A given maximum file age leads to a more or 

less constant cache occupancy

Managing the cache size
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• A smaller cache increases WAN traffic and load 
on the remote site

• But even a tiny cache is much better than no cache!

• If we know how much storage and network cost, 
we can find an optimal cache size that 
minimizes cost

• The result will depend on the access patterns, e.g. 
files read by analysis jobs may need to be cached for 
longer than files read by production jobs

• A cost function can be defined

• Total Cost = Network Cost + Storage Cost

• Storage Cost = max(cache usage) × cost / unit of disk 
storage

• Network Cost = avg(external traffic / time) × cost / unit 
of bandwidth

WAN traffic vs. used cache
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• Disk

• Cost estimated in the WLCG/HSF cost model working 
group

• Baseline HDD scenario: 40 EUR/TB/year

• Pessimistic HDD scenario: 100 EUR/TB/year

• SSD scenario: 100 EUR/TB/year

• Network

• NREN #1: 3.5 Tbps for 20 MEUR/year → 1.4 EUR/TB

• NREN #2: 20 Gbps for 4000 EUR/month → 0.6 
EUR/TB

• Baseline: 1 EUR/TB

• Pessimistic: 10 EUR/TB

• These estimates can be very different at different 
sites, so take them just as arbitrary but 
meaningful references

Cost estimates
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Disk cost 

(EUR/TB)

40 100 150

Network cost 

(EUR/TB)

1 8 2 1

10 70 35 25

Optimal retention policy (no. of days)



• Renewed interest in ATLAS on optimizing the storage usage

• Disk storage at Tier-2’s is a scarce resource

• The goal is to reduce the number of disk replicas of datasets to the minimum manageable

• Reduce it too much though and job latency will unacceptably increase!

• Basic ideas behind data popularity analysis

• Look at the access patterns to the storage for different job types and data formats

• Quantify how “efficiently” storage is used

• Data source is Rucio

• Information about file accesses

• Information about file transfers and file deletions

• This work is still ongoing, no conclusions or plans of action formulated yet

• Note that these results were obtained for 2020, a year without data taking

A complementary approach: intelligent storage 
management
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• Some possible definitions:

• Average number of dataset re-reads

• Good: straightforward, proportional to 
accesses

• Bad: it ignores if accesses are concentrated or 
spread out

• Fraction of weeks with accesses

• Good: many accesses in a short time count as 
one

• Bad: not good for short time intervals

• That datasets are read only very few 
times

• A lot to be gained if datasets are kept on disk 
only when they are really needed

Measuring dataset popularity
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• For how long are datasets kept on disk 
after being accessed for the last time?

• A few months

• Can we quantify how “efficiently” the disk 
volume is used?

• Volume Efficiency for a file = fraction of weeks 
spent on disk with accesses

• The higher, the better

• Storage Cost for a file = (no. of weeks on disk 
and without accesses – no. of weeks on disk and 
with accesses) × file size

• The lower, the better

• Files spend a lot of time on disk without 
being accessed

Volume efficiency
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2020 data



• A lot can be learned by looking at file access, file transfer and file deletion records

• This kind of studies provides quantitative support to important strategic changes in 
data management for Run 3 and beyond, needed to sustain much higher data volumes

• Site storage caches and data lakes

• Reducing disk replicas of data to the bare minimum

• This kind of analysis should be done continuously, to observe any changes in access 
patterns and ideally at all sites

Data popularity: conclusions
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• We have shown how much can be learned from monitoring logs, storage logs and data 
access records to better understand the behavior and the usage of storage resources 
at CERN and elsewhere

• EOS and Rucio are the primary data sources

• Most of this work is still in progress and its full potential has not yet been exploited

Conclusions
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Questions?
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Backup Slides
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Metric LHCb CMS ALICE ATLAS

Instance Volume

(EOS Control Tower)
17.50 PB 41.10 PB 46.50 PB 50.40 PB

Total Turnover 26.97 PB 43.20 PB 19.30 PB 110.16 PB

Total Turnover

(% of Total Volume)
154.13% 105.10% 41.50% 218.58%

Writes 11.69 PB 14.09 PB 5.98 PB 27.59 PB

Writes

(% of Total Volume)
66.81% 34.27% 12.86% 54.74%

Reads 15.28 PB 29.11 PB 13.32 PB 82.57 PB

Reads

(% of Total Volume)
87.31% 70.83% 28.65% 163.83%

41

Total Workload
3 Months Period: 01/01/2020 – 31/03/2020



Metric LHCb CMS ALICE ATLAS

Instance Volume

(EOS Control Tower)
17.50 PB 41.10 PB 46.50 PB 50.40 PB

Created Volume 11.67 PB 13.98 PB 5.98 PB 27.55 PB

Created Volume

(% of Total Volume)
66.70% 34.01% 12.85% 54.66%

Deleted Volume 12.47 PB 10.52 PB 3.38 PB 29.27 PB

Deleted Volume

(% of Total Volume)
71.26% 25.61% 7.28% 58.07%

Created and Deleted 10.57 PB 8.26 PB 2.05 PB 18.29 PB

Created and Deleted

(% of Created Volume)
90.59% 59.12% 34.26% 66.40%
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Created VS Deleted Files
3 Months Period: 01/01/2020 – 31/03/2020



Metric LHCb CMS ALICE ATLAS

Created, Deleted, Read 10.39 PB 7.44 PB 1.83 PB 15.27 PB

Created, Deleted, Not Read 0.19 PB 0.82 PB 0.21 PB 3.02 PB

Created, Deleted, Read

(% of Created and Deleted)
98.23% 90.09% 89.56% 83.47%

Created, Deleted, Not Read

(% of Created and Deleted)
1.77% 9.91% 10.44% 16.53%

Old, Not Deleted, Read 2.73 PB 5.81 PB 9.14 PB 5.77 PB

Old, Not Deleted, Not Read 13.73 PB 34.16 PB 37.16 PB 41.97 PB

Old, Not Deleted, Read

(% of Old and Not Deleted)
16.59% 14.53% 19.73% 12.09%

Old, Not Deleted, Not Read

(% of Old and Not Deleted)
83.41% 85.47% 80.27% 87.91%
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Created and Old Files, Read VS Not Read
3 Months Period: 01/01/2020 – 31/03/2020



Metric LHCb CMS ALICE ATLAS

Read Workload 15.28 PB 29.11 PB 13.32 PB 82.57 PB

Repeated Read Workload 2.91 PB 21.03 PB 11.48 PB 55.07 PB

Repeated Reads

(% of Read Workload)
19.02% 72.26% 86.18% 66.70%

Read Volume 14.85 PB 17.34 PB 14.04 PB 31.50 PB

Repeated Read Volume 3.06 PB 10.16 PB 11.30 PB 13.48 PB

Repeated Read Volume

(% of Read Volume)
20.60% 58.59% 80.50% 42.80%

Average Fraction of

File Read
86.48% 62.62% 18.42% 93.22%
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Read Workload
3 Months Period: 01/01/2020 – 31/03/2020


