

A first look at LAr full simulation using FCCSW

Mogens Dam & Katinka Wandall-Chistensen December 17th, 2020

Introduction

- Goal: investigate proposed LAr electromagnetic calorimeter for the purpose of precision physics at FCC-ee
- In particular, concentrate on tau lepton physics, which poses strict requirements on the detector performance.
 - Perfect test bench to evaluate detector performance
 - Major experimental challenge:

Clean separation and measurement of tau decay modes

 $\tau^{-} \rightarrow \pi^{-}\nu$, $\pi^{-}\pi^{0}\nu$, $\pi^{-}2\pi^{0}\nu$, $\pi^{-}3\pi^{0}\nu$, $\pi^{-}4\pi^{0}$

Identification and measurement of π^0 in colimated topologies close to hadronic environment from π^- impact

- Study/development of clustering methods for LAr calorimerter
 - MSc project (→ summer 2021) for Katinka Wandall-Chistensen

$\tau \rightarrow \rho \nu$ decays

Reminder: $\pi^0 \rightarrow \gamma \gamma$ opening angle is minimal when two photon energies are identical $E_{\gamma} = E_{\pi}/2$

 $\alpha = m_{\pi} / E_{\gamma}$

3

γ / π^0 separation

- For tau physics one does not necessarily have to positively identify all π^0 s
 - A high energy neutral electromagnetic shower assumed to be a merged π^0
- However, a more requiring challenge:
 - Normalisation of cross section using $e^+e^- \rightarrow \gamma\gamma$ events. Goal: 10⁻⁴

Experiences from starting out full simulation in FCCSW *)

It took me quite some time to realize what this simulated geometry implies

For example:

Why ~35 hits from penetrating muon track, when there are only 8 samplings?

^{*)} With lots of thanks to the FCCSW team, in particular Clement and Brieuc! Without their help this would have never happened!

Muon track

- Of course, this (at first surprising) pattern with ~4 hits for each measured r is a simple result of the detector readout geometry.
- The tilted readout cells gives a O(5cm) transverse smearing of the (otherwise delta function-like) muon signal

ECAL clustering ?

- Have been studying various modern clustering algos
 - PandoraPDF, Arbor, CLUE
- All of them are based on a strict division of calorimeter coordinates into transverse and longitudinal components
 - Follow shower development in \rightarrow out
 - Collect signal in layer i, then connect to layer i+1
- With the LAr readout organisation this is no longer obvious
 - r and rφ coordinates are mixed at the 8 cm scale
 - Not obvious (to me!) how then to do clustering

In retrospect...

Rethinking the clustering problem, probably conceptually it is not too different from a "standard" situation:

- a) Collect signal in layer i into clusters
- b) Connect to layer i+1

Still, the tilt of the readout cells does provide

- A strong correlation between the r and rφ coordinate of a measurement
- And hence, an additional "smearing" of the rφ coordinate given r

Cumulated energy

3500

h ELay cum0

5000 0.02053

Entries

Mean

Some initial single particle study

Some initial single particle study (ii)

Fraction of pions appearing as mip vs. calorimeter depth

Resonable agreement with calculated value for material mixture:

Simulation of a fictitious geometry

- Again with ample help from FSCSW, now simulating a calorimeter made of 90 concetric, cylindrical 7.2 mm layers (4 mm LAr, 2 mm absorber, 1.2 mm PCB)
- Save all geant4 hits deposited in LAr.
- Can in principle build « any » readout geometry
- This geometry is close to a « traditional » calorimeter geometry
 - Aleph, delphi, CALICE, ...
- But is probably not possible for LAr (?).

A few plots – 20 GeV electrons

Energy resolution of 1.5%, i.e. $6.7\%/\sqrt{E}$

Longitudinal shower development. Maximum at about layer 20, i.e. after $\sim 6 X_0$

Transverse shower development in 5 first 10 layer deep ($\sim 3 X_0$) samplings. Largely inside 5 mm in first 2 samplings (until shower max at $6X_0$)

Possible new electrodes segmentation

Typical size of the largest cell is \sim 4,2 x 4,8 cm Typical size of the smallest cell is \sim 3,5 x 1,5 cm From simulation files with all geant hits recorded, try to emulate two cell structures

- at top: "regular" cells following grid (16 mrad)
- at bottom: tilted cells

Emulate 2 em showers ~2.5 cell widths (~8 cm) apart.

- Red shower right in center of cell
- Blue shower right between two cells

Some extra smearing apparent from cell structure. Much more systematic study required!

A LEP Reminder - aleph

3 x 3 cm² ECAL cells with fine-grained longidudinal sampling

Tau polarisation analysis: Single photon fraction in π^0 sample

Another concern: Charge asymmetry?

The tilted geometry represents a manifest violation of change symmetry

Positively and negatively charged particles see a different ECAL

Summary

- Have started full simulation study of LAr concept ECAL for FCC-ee with the scope of understanding its performance for precision reconstruction of Z →ττ events
- The FCCSW environment looks very promising
 - And has good support (and is fun to use!)
- Initial struggles to understand (and accept!) proposed readout geometry
 - Tilted geometry is different and a challenge, I think
 - Correlation r / rφ
 - Charge asymmetric detector (is this a problem?)
 - Would be nice to have a spatial segmentation *at least* as good as in aleph (3x3 cm²)
 - Γ / π^0 separation at $E_{\pi 0} = 45.6 \text{ GeV}$ is a requirement for background rejection for luminosity measurement via $e^+e^- \rightarrow \gamma\gamma$.
 - Photons from $\pi^0 \rightarrow \gamma \gamma$ separated by 1.2 cm at ECAL.